RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) is a widespread type of leukemia that predominantly targets B lymphocytes, undermining the balance between cell proliferation and apoptosis. In healthy B cells, miR-15/16, a tandem of microRNAs, functions as a tumor suppressor, curbing the expression of the antiapoptotic B cell lymphoma 2 protein (Bcl-2). Conversely, in CLL patients, a recurring deletion on chromosome 13q14, home to the miR15-a and miR16-1 genes, results in Bcl-2 overexpression, thereby fostering the onset of the pathology.
View Article and Find Full Text PDFExtravasation is a fundamental step in the metastatic journey, where cancer cells exit the bloodstream and breach the endothelial cell barrier to infiltrate target tissues. The tactics cancer cells employ are sophisticated, closely reflecting those used by the immune system for tissue surveillance. Remarkably, tumor cells have been observed to form distinct associations or clusters with immune cells where neutrophils stand out as particularly crucial partners.
View Article and Find Full Text PDFOxide glasses are an elementary group of materials in modern society, but brittleness limits their wider usability at room temperature. As an exception to the rule, amorphous aluminum oxide (a-Al O ) is a rare diatomic glassy material exhibiting significant nanoscale plasticity at room temperature. Here, it is shown experimentally that the room temperature plasticity of a-Al O extends to the microscale and high strain rates using in situ micropillar compression.
View Article and Find Full Text PDFGene delivery is the basis for developing gene therapies that, in the future, may be able to cure virtually any disease, including viral infections. The use of short interfering RNAs (siRNAs) targeting viral replication is a novel strategy for treating HIV-1 infection. In this study, we prepared chitosan particles containing siRNA tat/rev via ionotropic gelation.
View Article and Find Full Text PDFDement Neurocogn Disord
October 2021
Background And Purpose: The aim of this study was to describe the variations in the speech range profile (SRP) of patients affected by cognitive decline.
Methods: We collected the data of patients managed for suspected voice and speech disorders, and suspected cognitive impairment. Patients underwent an Ear Nose and Throat evaluation and Mini-Mental State Examination (MMSE).
Promoting solar fuels as a viable alternative to hydrocarbons calls for technologies that couple efficiency, durability, and low cost. In this work we elucidate how hybrid organic-inorganic systems employing hybrid photocathodes (HPC) and perovskite solar cells (PSC) could eventually match these needs, enabling sustainable and clean hydrogen production. First, we demonstrate a system comprising an HPC, a PSC, and a Ru-based oxygen evolution catalyst reaching a solar-to-hydrogen (STH) efficiency above 2%.
View Article and Find Full Text PDFGroup VI transition metal chalcogenides are the subject of increasing research interest for various electrochemical applications such as low-temperature water electrolysis, batteries, and supercapacitors due to their high activity, chemical stability, and the strong correlation between structure and electrochemical properties. Particularly appealing is their utilization as electrocatalysts for the synthesis of energy vectors and value-added chemicals such as C-based chemicals from the CO reduction reaction (COR) or ammonia from the nitrogen fixation reaction (NRR). This review discusses the role of structural and electronic properties of transition metal chalcogenides in enhancing selectivity and activity toward these two key reduction reactions.
View Article and Find Full Text PDFThe use of solution processes to fabricate perovskite solar cells (PSCs) represents a winning strategy to reduce capital expenditure, increase the throughput, and allow for process flexibility needed to adapt PVs to new applications. However, the typical fabrication process for PSC development to date is performed in an inert atmosphere (nitrogen), usually in a glovebox, hampering the industrial scale-up. In this work, we demonstrate, for the first time, the use of double-cation perovskite (forsaking the unstable methylammonium (MA) cation) processed in ambient air by employing potassium-doped graphene oxide (GO-K) as an interlayer, between the mesoporous TiO and the perovskite layer and using infrared annealing (IRA).
View Article and Find Full Text PDFMolybdenum sulfide emerged as promising hydrogen evolution reaction (HER) electrocatalyst thanks to its high intrinsic activity, however its limited active sites exposure and low conductivity hamper its performance. To address these drawbacks, the non-equilibrium nature of pulsed laser deposition (PLD) is exploited to synthesize self-supported hierarchical nanoarchitectures by gas phase nucleation and sequential attachment of defective molybdenum sulfide clusters. The physics of the process are studied by in situ diagnostics and correlated to the properties of the resulting electrocatalyst.
View Article and Find Full Text PDFPurpose: To evaluate the prevalence of oropharyngeal dysphagia in elderly patients suffering from minimal or mild cognitive decline.
Patients And Methods: We retrospectively collected the data of patients suffering from mild cognitive impairment or mild dementia and were undergoing management for suspected oropharyngeal dysphagia, in our department. All our patients were subjected to Mini Mental State Examination test, MD Anderson dysphagia inventory and caregiver mealtime and dysphagia questionnaire.
In this contribution, we describe a room-temperature, template-free, single-step approach for the growth of functional crystalline silicon nanostructures with tailored porosity and photonic properties. The method employs a plasma-assisted nanoparticle synthesis reactor in combination with a supersonic jet deposition stage, in what we call nanoparticle jet deposition or plasma-assisted, supersonic aerosol jet deposition. The relationship between plasma parameters, nanoparticle impaction conditions and the resulting silicon material structural characteristics is investigated.
View Article and Find Full Text PDFQuasi-1D-hyperbranched TiO nanostructures are grown via pulsed laser deposition and sensitized with thin layers of CdS to act as a highly efficient photoelectrochemical photoanode. The device properties are systematically investigated by optimizing the height of TiO scaffold structure and thickness of the CdS sensitizing layer, achieving photocurrent values up to 6.6 mA cm and reaching saturation with applied biases as low as 0.
View Article and Find Full Text PDFWe demonstrate exceptionally large modulation of PL intensity in hierarchical titanium dioxide (TiO) nanostructures exposed to molecular oxygen (O). Optical responsivities up to about 1100% at 20% O concentrations are observed in hyperbranched anatase-phase hierarchical structures, outperforming those obtainable by commercial TiO nanopowders (up to a factor of ∼7 for response to synthetic air) and significantly improving the ones typically reported in PL-based opto-chemical gas sensing using MOXs. The improved PL response is discussed in terms of the specific morphology of hierarchical structures, characterized by simultaneous presence of small nanoparticles, large surface areas, and large voids.
View Article and Find Full Text PDFNowadays, the efficient, stable, and scalable conversion of solar energy into chemical fuels represents a great scientific, economic, and ethical challenge. Amongst the available candidate technologies, photoelectrochemical water-splitting potentially has the most promising technoeconomic trade-off between cost and efficiency. However, research on semiconductors and photoelectrode architectures suitable for H evolution has focused mainly on the use of fabrication techniques and inorganic materials that are not easily scalable.
View Article and Find Full Text PDFMonolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques.
View Article and Find Full Text PDFPhotoelectrochemical H production through hybrid organic/inorganic interfaces exploits the capability of polymeric absorbers to drive photo-induced electron transfer to an electrocatalyst in a water environment. Photoelectrode architectures based on solution-processed organic semiconductors are now emerging as low-cost alternatives to crystalline inorganic semiconductors based on Si, oxides and III-V alloys. In this work, we demonstrate that the stability of a hybrid organic/inorganic photocathode, employing a P3HT:PCBM blend as photoactive material, can be considerably improved by introducing an electrochemically stable WO hole selective layer, paired with a TiO electron selective layer.
View Article and Find Full Text PDFHere, we have developed an organic photocathode for water reduction to H , delivering more than 1 mA cm at 0 V versus RHE and above 3 mA cm at -0.5 V versus RHE with moderate stability under neutral pH conditions. The initial competitive reduction of water to H and ZnO to metallic Zn is responsible for the dynamic behaviour of both photocurrent and Faradaic efficiency of the device, which reaches 100 % Faradaic efficiency after 90 min operation.
View Article and Find Full Text PDFThe lack of suitable materials solutions stands as a major challenge for the development of advanced nuclear systems. Most issues are related to the simultaneous action of high temperatures, corrosive environments and radiation damage. Oxide nanoceramics are a promising class of materials which may benefit from the radiation tolerance of nanomaterials and the chemical compatibility of ceramics with many highly corrosive environments.
View Article and Find Full Text PDFReplacement strategies arise as promising approaches in case of inherited retinal dystrophies leading to blindness. A fully organic retinal prosthesis made of conjugated polymers layered onto a silk fibroin substrate is engineered. First, the biophysical and surface properties are characterized; then, the long-term biocompatibility is assessed after implantation of the organic device in the subretinal space of 3-months-old rats for a period of five months.
View Article and Find Full Text PDFA quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation.
View Article and Find Full Text PDF