Publications by authors named "Foni E"

Influenza D virus (IDV) is a novel orthomyxovirus that was first isolated in 2011 in the United States from a swine exhibiting influenza-like disease. To date, its detection is extended to all continents and in a broad host range: IDV is circulating in cattle, swine, feral swine, camelids, small ruminants and horses. Evidence also suggests a possible species jump to humans, underlining the issue of zoonotic potential.

View Article and Find Full Text PDF
Article Synopsis
  • Influenza D virus (IDV) has been increasingly found globally, with cattle being the primary carriers and three genetic clusters identified: D/OK, D/660, and D/Japan.
  • A study in Northern Italy from early 2018 to mid-2019 detected IDV in 74 out of 725 bovine farms, revealing the presence of the D/660 strain, which was previously unknown in Europe.
  • A unique reassortant strain was also found, indicating diverse IDV genetic patterns, emphasizing the importance of ongoing monitoring to understand IDV's spread and impacts on cattle health.
View Article and Find Full Text PDF

Antimicrobial resistance is increasing within the porcine industry with consequential high impact on human health, leading to a need for new antimicrobials. Lately, the scientific community has turned its interest towards natural compounds, and different essential oils have been tested on spermatozoa for preliminary assessment of toxicity before considering them as good substitutes for standard antibiotics. The aim of the present work was to investigate the potential antimicrobial effect of Melaleuca alternifolia and Rosmarinus officinalis essential oils, already evaluated for toxicity, on swine artificial insemination doses deprived of spermatozoa and stored at 16 °C for 5 days.

View Article and Find Full Text PDF

Swine influenza viruses (SIVs) have been repeatedly demonstrated to circulate in wild boar ( Sus scrofa) populations, whereas no evidence of exposure to avian influenza viruses (AIVs) has been described in wild boar. To better understand how different environments may influence the ecology of influenza A viruses (IAVs) in wild suid populations, we examined biologic samples of wild boars from two study areas represented by an upland (UL) and a wetland (WL) in northern and central Italy, respectively. Serum samples were collected from 388 wild boars sampled in the UL, whereas both a serum sample and a nasal swab were obtained from each of 35 wild boars sampled in the WL.

View Article and Find Full Text PDF

Influenza D virus (IDV) was first reported in 2011 in swine in Oklahoma and consequently found in cattle, sheep, and goats across North America and Eurasia. Cattle have been proposed as the natural reservoir. In this study, we developed and validated a MAb-based competitive ELISA for the detection of antibodies against IDV.

View Article and Find Full Text PDF

Influenza D virus (IDV), a new member of the Orthomyxoviridae family, was first reported in 2011 in swine in Oklahoma, and consequently found in cattle across North America and Eurasia. To investigate the circulation of IDV among pigs in Italy, in the period between June 2015 and May 2016, biomolecular and virological tests were performed on 845 clinical samples collected from 448 pig farms affected by respiratory distress located in the Po Valley. Serological tests were conducted on 3698 swine sera, including archive sera collected in 2009, as well as samples collected in 2015 from the same region.

View Article and Find Full Text PDF

Influenza A virus (IAV) infection in swine plays an important role in the ecology of influenza viruses. The emergence of new IAVs comes through different mechanisms, with the genetic reassortment of genes between influenza viruses, also originating from different species, being common. We performed a genetic analysis on 179 IAV isolates from humans (n.

View Article and Find Full Text PDF

The current circulating swine influenza virus (IV) subtypes in Europe (H1N1, H1N2, and H3N2) are associated with clinical outbreaks of disease. However, we showed that pigs could be susceptible to other IV strains that are able to cross the species barrier. In this work, we extended our investigations into whether different IV strains able to cross the species barrier might give rise to different innate immune responses that could be associated with pathological lesions.

View Article and Find Full Text PDF

The occurrence of virus belonging to the putative genus Influenzavirus D, has been demonstrated all-around the world arousing interest within the scientific community. Most of the published virological surveys are based on the first described Real-Time PCR method, designed on the PB1 gene of the first isolate. The necessity of extending investigation to different animal species and geographic areas, requires a continuous update of molecular tests, considering newly sequenced strains.

View Article and Find Full Text PDF

Background: A diversifying pool of mammalian-adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine. Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically.

View Article and Find Full Text PDF

Unlabelled: The H1N1 Eurasian avian-like swine (EAsw) influenza viruses originated from an avian H1N1 virus. To characterize potential changes in the membrane fusion activity of the hemagglutinin (HA) during avian-to-swine adaptation of the virus, we studied EAsw viruses isolated in the first years of their circulation in pigs and closely related contemporary H1N1 viruses of wild aquatic birds. Compared to the avian viruses, the swine viruses were less sensitive to neutralization by lysosomotropic agent NH4Cl in MDCK cells, had a higher pH optimum of hemolytic activity, and were less stable at acidic pH.

View Article and Find Full Text PDF

The quantitative and qualitative patterns of environmental contamination by Listeria monocytogenes were investigated in the production chain of dry-cured Parma ham. Standard arrays of surfaces were sampled in processing facilities during a single visit per plant in the three compartments of the food chain, i.e.

View Article and Find Full Text PDF

Unlabelled: Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host.

View Article and Find Full Text PDF

Unlabelled: The emergence in humans of the A(H1N1)pdm09 influenza virus, a complex reassortant virus of swine origin, highlighted the importance of worldwide influenza virus surveillance in swine. To date, large-scale surveillance studies have been reported for southern China and North America, but such data have not yet been described for Europe. We report the first large-scale genomic characterization of 290 swine influenza viruses collected from 14 European countries between 2009 and 2013.

View Article and Find Full Text PDF
Article Synopsis
  • Swine influenza poses a significant concern for both veterinary and public health, leading to the establishment of the ESNIP3 network, which conducted surveillance on SIVs in Europe from 2010 to 2013.
  • The surveillance involved testing over 9,000 herds across 17 countries, finding that 31% had influenza A viruses, with the most common being avian-like swine H1N1, human-like reassortant H1N2, H3N2, and the pandemic A/H1N1 2009.
  • Interestingly, different geographic areas showed varying prevalence of these virus subtypes, with reassortant viruses emerging as a concern for potential zoonotic infections in the future.
View Article and Find Full Text PDF

The influenza A virus (IAV) subtypes H1N1, H3N2 and H1N2 are the most prevalent subtypes in swine in Italy. Reassortant influenza A viruses subtypes in swine appeared in European pig population. In particular reassortant viruses carrying genome segment from the pandemic H1N1 (H1N1pdm) are reported in many European countries, including Italy.

View Article and Find Full Text PDF

We investigated the circulation dynamics of low pathogenic avian influenza viruses (LPAIVs) in the mallard (Anas platyrhynchos) reservoir in Italy. In particular, we evaluated the temporal distribution of virologic findings by combining virus isolation data with a new population genetic-based study approach. Thus, during 11 consecutive sampling periods (wintering periods between 1993/94 and 2003/04), categorised into 40 sampling sub-periods, cloacal swab samples were collected from 996 wild and 16 captive-reared mallards, to be screened by RT-PCR before attempting influenza A virus isolation in embryonated eggs.

View Article and Find Full Text PDF
Article Synopsis
  • An epidemiological survey was conducted to understand the role of wild boars in the spread of the influenza virus, particularly focusing on swine influenza virus (SIV) through testing and analysis of samples collected from wild boars in Italy.
  • A total of 354 lung samples were collected from wild boars, leading to the isolation of three strains of avian-like SIV subtype H1N1, which are closely related to recent strains found in domestic pigs.
  • The results indicate that SIV is actively circulating in the wild boar population, highlighting the need for broader studies to assess their epidemiological impact.
View Article and Find Full Text PDF

In this study, the full-genome sequence of a novel reassortant H1N1 swine influenza virus (SIV) is reported. The isolate has a hemagglutinin (HA) gene of the pandemic H1N1 influenza virus, but it carries the seven genome segments of the avian-origin H1N1 SIV currently circulating in European pig farms.

View Article and Find Full Text PDF

Avian-like H1N1 and reassortant H3N2 and H1N2 influenza A viruses with a human-like haemagglutinin have been co-circulating in swine in Europe for more than a decade. We aimed to examine the infection dynamics of the three swine influenza virus (SIV) lineages at the farm level, and to identify possible regional and seasonal variations in their circulation. Sera were collected from six successive generations of fattening pigs (2006-2008) in a total 80 farrow-to-finish herds in Belgium, Italy, France and Spain and examined for antibodies against the three SIVs in haemagglutination inhibition tests.

View Article and Find Full Text PDF

In Europe, three major swine influenza viral (SIV) subtypes (H1N1, H1N2 and H3N2) have been isolated in pigs. Developing a test that is able to detect and identify the subtype of the circulating strain rapidly during an outbreak of respiratory disease in the pig population is of essential importance. This study describes two multiplex RT-PCRs which distinguish the haemagglutinin (HA) gene and the neuraminidase (NA) gene of the three major subtypes of SIV circulating in Europe.

View Article and Find Full Text PDF

Three subtypes (H1N1, H1N2, and H3N2) are currently diffused worldwide in pigs. The H1N2 subtype was detected for the first time in Italian pigs in 1998. To investigate the genetic characteristics and the molecular evolution of this subtype in Italy, we conducted a phylogenetic analysis of whole genome sequences of 26 strains isolated from 1998 to 2010.

View Article and Find Full Text PDF

The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1], [2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4].

View Article and Find Full Text PDF