Conjugated polymers (CPs) have been actively utilized as photocatalysts for hydrogen evolution due to their easy synthetic tunability to endow specific functionalities, including visible-light absorption, higher-lying LUMO energy for proton reduction, and sufficient photochemical stability. Enhancing interfacial surface and compatibility of hydrophobic CPs with hydrophilic water is the central focus to improve the hydrogen evolution rate (HER). Although a number of successful approaches have been developed in recent years, tedious chemical modifications or post-treatment of CPs make reproducibility of the materials difficult.
View Article and Find Full Text PDFWe discovered a unique synthetic route to construct 2H-pyran-containing tetracyclic dithienocyclopentapyran (DTCP) and dibenzocyclopentapyran (DBCP) architectures. The synthesis involves an acid-induced dehydration cyclization followed by a [1,5] hydride-shift isomerization to form a cyclopentanone moiety which was converted to the pyran-embedded tetracyclic products by a CuI-catalyzed intramolecular C-O bond formation in good yield. DTCP was used as a building block to prepare an acceptor-donor-acceptor (A-D-A) type n-type material DTCP-BC leading to a solar cell efficiency of 9.
View Article and Find Full Text PDFA new zwitterionic small molecule 4-(dimethyl(pyridin-2-yl)ammonio)butane-1-sulfonate (PAS), synthesized from 2-dimethylaminopyrindine (2-DMAP), was developed for the ITO cathode modifier. PAS and 2-DMAP dissolved in methanol can form a thin layer on ITO cathode by a simple spin-coating process. The heteroatom moieties in 2-DMAP (sp and sp nitrogen) and PAS (sp nitrogen and sulfonate ion) can coordinate to the ITO surface and decrease the ITO work function by the induced surface dipoles.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2019
The electrical and optical properties of the hole transport layer (HTL) are critical for organic and halide perovskite solar cell (OSC and PSC, respectively) performance. In this work, we studied the effect of Mg doping on CuCrO (CCO) nanoparticles and their performance as HTLs in OSCs and PSCs. CCO and Mg doped CCO (Mg:CCO) nanoparticles were hydrothermally synthesized.
View Article and Find Full Text PDFBenzene-based 1,1-dicyanomethylene-3-indanone (IC) derivatives have been widely utilized as the end-group to construct acceptor-donor-acceptor type nonfullerene acceptors (A-D-A type NFAs). The extension of the end-group conjugation of nonfullerene acceptors (NFAs) is a rational strategy to facilitate intermolecular stacking of the end-groups which are responsible for efficient electron transportation. A bicyclic benzothiophene-based end-group acceptor, 2-(3-oxo-2,3-dihydro-1-benzo[]cyclopenta[]thiophen-1-ylidene)malononitrile, denoted as α-BC was designed and synthesized.
View Article and Find Full Text PDFIn this research, we developed six new selenophene-incorporated naphthobisthiadiazole-based donor-acceptor polymers PNT2Th2Se-OD, PNT2Se2Th-OD, PNT4Se-OD, PNT2Th2Se-DT, PNT2Se2Th-DT, and PNT4Se-DT. The structure-property relationships have been systematically established through the comparison of their structural variations: (1) isomeric biselenophene/bithiophene arrangement between PNT2Th2Se and PNT2Se2Th polymers, (2) biselenophene/bithiophene and quarterselenophene donor units between PNT2Th2Se/PNT2Se2Th and PNT4Se polymers, and (3) side-chain modification between the 2-octyldodecylthiophene (OD)- and 2-decyltetradecyl (DT)-series polymers. The incorporation of selenophene units in the copolymers induces stronger charge transfer to improve the light-harvesting capability while maintaining the strong intermolecular interactions to preserve the intrinsic crystallinity for high carrier mobility.
View Article and Find Full Text PDFA new class of additive materials bis(pentafluorophenyl) diesters (BFEs) where the two pentafluorophenyl (CF) moieties are attached at the both ends of a linear aliphatic chain with tunable tether lengths (BF5, BF7, and BF13) were designed and synthesized. In the presence of BF7 to restrict the migration of fullerene by hand-grabbing-like supramolecular interactions induced between the CF groups and the surface of fullerene, the P3HT:PCBM:BF7 device showed stable device characteristics after thermal heating at 150 °C for 25 h. The morphologies of the active layers were systematically investigated by optical microscopy, grazing-incidence small-angle X-ray scattering (GISAXS), and atomic force microscopy.
View Article and Find Full Text PDFA formylated benzodi(cyclopentadithiophene) (BDCPDT) ladder-type structure with forced coplanarity is coupled with two 1,1-dicyanomethylene-3-indanone (IC) moieties via olefination to form a non-fullerene acceptor, BDCPDT-IC. The BDCPDT-IC, as an acceptor (A) with broad light-absorbing ability and excellent solution processability, is combined with a second PCBM acceptor (A) and a medium band gap polymer, PBDB-T, as the donor (D) to form a ternary blend with gradient HOMO/LUMO energy alignments and panchromatic absorption. The device with the inverted architecture using the D:A:A ternary blend has achieved a highest efficiency of 9.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2014
Bis-adduct fullerenes surrounded by two insulating addends sterically attenuate intermolecular interaction and cause inferior electron transportation. In this research, we have designed and synthesized a new class of bis-adduct fullerene materials, methylphenylmethano-C60 bis-adduct (MPC60BA), methylthienylmethano-C60 bis-adduct (MTC60BA), methylphenylmethano-C70 bis-adduct (MPC70BA), and methylthienylmethano-C70 bis-adduct (MTC70BA), functionalized with two compact phenylmethylmethano and thienylmethylmethano addends via cyclopropyl linkages. These materials with much higher-lying lowest unoccupied molecular orbital (LUMO) energy levels successfully enhanced the Voc values of the P3HT-based solar cell devices.
View Article and Find Full Text PDF