A systematic study was undertaken to determine the influence of ortho'-substituted nucleophilic groups (OH, NH, or NHR) on the reactivity of anodically generated 4-methoxy- and 3,4-dimethoxystilbene cation radicals. The results showed that when ortho-substituted nucleophilic groups such as OH and NHR are present in the other ring, both direct and crossover intramolecular cation-nucleophile reactions occur to give bisbenzofurans/bisindoles or fused bisbenzopyrans/bisquinolines, respectively. Where an additional 3-methoxy substituent is present, bridged oxocine/azocine products are formed in addition to the bisbenzopyrans/bisquinolines and bisbenzofurans/bisindoles.
View Article and Find Full Text PDFA systematic study on the FeCl3-induced oxidation of 1,2-diarylalkenes was carried out with the focus on the variation of product type as a function of aromatic substitution, as well as to compare the reactivity of stilbene cation radicals generated via Fe(III) oxidation with those generated by anodic oxidation. The aromatic substituents were found to fall into three main categories, namely those that give rise to tetralins and/or dehydrotetralins, those that give products possessing pallidol and ampelopsin F-type carbon skeletons, and last, those that give rise to trimeric products, indanes, and dehydrotetralins/tetralins. The latter are those stilbenes with a para-methoxy substituent in one ring and a para- or meta-EWG (CF3, NO2, Cl, F) in the other, and represent the most prominent departure when compared with the behavior of the same stilbenes under the conditions of anodic oxidation.
View Article and Find Full Text PDFA systematic study of the electrochemical oxidation of 1,2-diarylalkenes was carried out with the focus on detailed product studies and variation of product type as a function of aromatic substitution. A reinvestigation of the electrochemical oxidation of 4,4'-dimethoxystilbene under various conditions was first carried out, and all products formed were fully characterized and quantitated. This was followed by a systematic investigation of the effect of aromatic substitution on the nature and distribution of the products.
View Article and Find Full Text PDFSeveral transformations of the seco Aspidosperma alkaloid leuconolam were carried out. The based-induced reaction resulted in cyclization to yield two epimers, the major product corresponding to the optical antipode of a (+)-meloscine derivative. The structures and relative configuration of the products were confirmed by X-ray diffraction analysis.
View Article and Find Full Text PDF