Publications by authors named "Fong-Chuen Loo"

Black phosphorus (BP) is a two-dimensional (2D) nanomaterial with high charge-carrier mobility, a tunable direct bandgap, and a unique in-plane anisotropic structure; however, the easiness of BP oxidation into P O species in ambient conditions largely limits its applications. In this study, modified cisplatin-Pt-NO [Pt(NH)(NO)] is used for surface coordination with BP nanosheets to generate Pt@BP, which maintains the surface morphology and properties of BP nanosheets for more than 24 h in ambient conditions. In addition, Pt@BP interacts with DNA both in vitro and in cell.

View Article and Find Full Text PDF

This paper reports a digital micro-mirror device (DMD)-enabled real-time multi-channel biosensing system based on angular interrogation surface plasmon resonance (SPR). In the experiments, angular scanning is achieved by a DMD that facilitates SPR measurements using a single-point photodetector. In the four-channel measurement setup, real-time monitoring of bovine serum albumin (BSA) and anti-BSA binding interactions is performed at various concentration levels.

View Article and Find Full Text PDF

Two-dimensional surface plasmon resonance (2D-SPR) imaging, which provides a real-time, sensitive, and high-throughput analysis of surface events in a two dimensional manner, is a valuable tool for studying biomolecular interactions and biochemical reactions without using any tag labels. The sensing principle of 2D-SPR includes angular, wavelength, and phase interrogation. In this chapter, the 2D-SPR imaging technique is applied for sensing a target microRNA by its corresponding oligonucleotide probes, with sequence complementarity, immobilized on the gold SPR sensing surface.

View Article and Find Full Text PDF

Incorporating the temporal carrier technique with common-path spectral interferometry, we have successfully demonstrated an advanced surface plasmon resonance (SPR) biosensing system which achieves refractive index resolution (RIR) up to 2 × 10(-8) refractive index unit (RIU) over a wide dynamic range of 3 × 10(-2) RIU. While this is accomplished by optimizing the SPR differential phase sensing conditions with just a layer of gold, we managed to address the spectral phase discontinuity with a novel spectral-temporal phase measurement scheme. As the new optical setup supersedes its Michelson counterpart in term of simplicity, we believe that it is a significant contribution for practical SPR sensing applications.

View Article and Find Full Text PDF