Preclinical intravital imaging such as microscopy and optical coherence tomography have proven to be valuable tools in cancer research for visualizing the tumor microenvironment and its response to therapy. These imaging modalities have micron-scale resolution but have limited use in the clinic due to their shallow penetration depth into tissue. More clinically applicable imaging modalities such as CT, MRI, and PET have much greater penetration depth but have comparatively lower spatial resolution (mm scale).
View Article and Find Full Text PDFBackground: There are limited preclinical orthotopic prostate cancer models due to the technical complexity of surgical engraftment and tracking the tumor growth in the mouse prostate gland. Orthotopic xenografts recapitulate the tumor microenvironment, tumor stromal interactions, and clinical behavior to a greater extent than xenografts grown at subcutaneous or intramuscular sites.
Methods: This study describes a novel micro-surgical technique for orthotopically implanting intact tumors pieces from cell line derived (transgenic adenocarcinoma mouse prostate [TRAMP]-C2) or patient derived (neuroendocrine prostate cancer [NEPC]) tumors in the mouse prostate gland and monitoring tumor growth using magnetic resonance (MR) imaging.
Early and precise detection of solid tumor cancers is critical for improving therapeutic outcomes. In this regard, magnetic resonance imaging (MRI) has become a useful tool for tumor diagnosis and image-guided therapy. However, its effectiveness is limited by the shortcomings of clinically available gadolinium-based contrast agents (GBCAs), i.
View Article and Find Full Text PDFFinding effective disease-modifying treatment for Alzheimer's disease remains challenging due to an array of factors contributing to the loss of neural function. The current study demonstrates a new strategy, using multitargeted bioactive nanoparticles to modify the brain microenvironment to achieve therapeutic benefits in a well-characterized mouse model of Alzheimer's disease. The application of brain-penetrating manganese dioxide nanoparticles significantly reduces hypoxia, neuroinflammation, and oxidative stress; ultimately reducing levels of amyloid β plaques within the neocortex.
View Article and Find Full Text PDFMagnetic resonance-guided high intensity focused ultrasound (MRgHIFU) is an established method for producing localized hyperthermia. Given the real-time imaging and acoustic energy modulation, this modality enables precise temperature control within a defined area. Many thermal applications are being explored with this noninvasive, nonionizing technology, such as hyperthermia generation, to release drugs from thermosensitive liposomal carriers.
View Article and Find Full Text PDFHuman cerebral cancers are known to contain cell types resembling the varying stages of neural development. However, the basis of this association remains unclear. Here, we map the development of mouse cerebrum across the developmental time-course, from embryonic day 12.
View Article and Find Full Text PDFPurpose: The efficacy of MR-guided radiotherapy on a MR-LINAC (MR-L) is dependent on the geometric accuracy of its MR images over clinically relevant Fields-of-View (FOVs). Our objectives were to: evaluate gradient non-linearity (GNL) on the Elekta Unity MR-L across time via 76 weekly measurements of 3D-distortion over concentrically larger diameter spherical volumes (DSVs); quantify distortion measurement error; and assess the temporal stability of spatial distortion using statistical process control (SPC).
Methods: MR-image distortion was assessed using a large-FOV 3D-phantom containing 1932 markers embedded in seven parallel plates, spaced 25 mm × 25 mm in- and 55 mm through-plane.
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool for non-invasive volumetric monitoring of the tumor vascular status and its therapeutic response. However, clinical utility of DCE-MRI is challenged by uncertainty in its ability to quantify the tumor microvasculature ([Formula: see text] scale) given its relatively poor spatial resolution (mm scale at best). To address this challenge, we directly compared DCE-MRI parameter maps with co-registered micron-scale-resolution speckle variance optical coherence tomography (svOCT) microvascular images in a window chamber tumor mouse model.
View Article and Find Full Text PDFPurpose: To report dosimetry, preliminary toxicity and health-related quality of life (HRQoL) outcomes of tumor-targeted dose-escalation delivered by integrated boost volumetric arc therapy (IB-VMAT) or MR-guided HDR brachytherapy (HDR) boost for prostate cancer.
Materials And Methods: Patients diagnosed with localized prostate cancer, with at least 1 identifiable intraprostatic lesion on multiparametric MRI (mpMRI) were enrolled in a prospective non-randomized phase II study. All patients received VMAT to the prostate alone (76 Gy in 38 fractions) plus a GTV boost: IB-VMAT (95 Gy in 38 fractions) or MR-guided HDR (10 Gy single fraction).
Objective: Many centers are hesitant to perform clinically indicated MRI in patients who have undergone deep brain stimulation (DBS). Highly restrictive guidelines prohibit the use of most routine clinical MRI protocols in these patients. The authors' goals were to assess the safety of spine MRI in patients with implanted DBS devices, first through phantom model testing and subsequently through validation in a DBS patient cohort.
View Article and Find Full Text PDFHypoxia, the state of low oxygenation that often arises in solid tumours due to their high metabolism and irregular vasculature, is a major contributor to the resistance of tumours to radiation therapy (RT) and other treatments. Conventional RT extends treatment over several weeks or more, and nominally allows time for oxygen levels to increase ("reoxygenation") as cancer cells are killed by RT, mitigating the impact of hypoxia. Recent advances in RT have led to an increase in the use stereotactic body radiotherapy (SBRT), which delivers high doses in five or fewer fractions.
View Article and Find Full Text PDFHeart failure (HF) and subarachnoid hemorrhage (SAH) chronically reduce cerebral perfusion, which negatively affects clinical outcome. This work demonstrates a strong relationship between cerebral artery cystic fibrosis transmembrane conductance regulator (CFTR) expression and altered cerebrovascular reactivity in HF and SAH. In HF and SAH, CFTR corrector compounds (C18 or lumacaftor) normalize pathological alterations in cerebral artery CFTR expression, vascular reactivity, and cerebral perfusion, without affecting systemic hemodynamic parameters.
View Article and Find Full Text PDFBackground: Malignant gliomas are highly invasive and extremely difficult to treat tumours with poor prognosis and outcomes. Photodynamic therapy (PDT), mediated by Gleolan®, has been studied previously with partial success in treating these tumours and extending lifetime. We aim to determine whether combining PDT using ALA-protoporphyrin IX (PpIX) with a liposomal formulation of the clinical epidermal growth factor receptor (EGFR) inhibitor, lapatinib, would increase the anti-tumour PDT efficacy.
View Article and Find Full Text PDFPurpose: The aims of this study are to evaluate the stability of radiomic features from Apparent Diffusion Coefficient (ADC) maps of cervical cancer with respect to: (1) reproducibility in inter-observer delineation, and (2) image pre-processing (normalization/quantization) prior to feature extraction.
Materials And Methods: Two observers manually delineated the tumor on ADC maps derived from pre-treatment diffusion-weighted Magnetic Resonance imaging of 81 patients with FIGO stage IB-IVA cervical cancer. First-order, shape, and texture features were extracted from the original and filtered images considering 5 different normalizations (four taken from the available literature, and one based on urine ADC) and two different quantization techniques (fixed-bin widths from 0.
Background: Glioblastoma is an aggressive brain cancer in adults with a grave prognosis, aggressive radio and chemotherapy provide only a 15 months median survival.
Methods: We evaluated the tolerability and efficacy of the Ruthenium-based photosensitizer TLD-1433 with apo-Transferrin (Rutherrin) in the rat glioma 2 (RG-2) model. The specific tumor uptake ratio and photodynamic therapy (PDT) threshold of the rat glioblastoma and normal brain were determined, survival and CD8T-cell infiltration post-therapy were analyzed.
Accurate, patient-specific measurement of arterial input functions (AIF) may improve model-based analysis of vascular permeability. This study investigated factors affecting AIF measurements from magnetic resonance imaging (MRI) magnitude (AIF) and phase (AIF) signals, and compared them against computed tomography (CT) (AIF), under controlled conditions relevant to clinical protocols using a multimodality flow phantom. The flow phantom was applied at flip angles of 20° and 30°, flow rates (3-7.
View Article and Find Full Text PDFObjective: Physicians are more frequently encountering patients who are treated with deep brain stimulation (DBS), yet many MRI centers do not routinely perform MRI in this population. This warrants a safety assessment to improve DBS patients' accessibility to MRI, thereby improving their care while simultaneously providing a new tool for neuromodulation research.
Methods: A phantom simulating a patient with a DBS neuromodulation device (DBS lead model 3387 and IPG Activa PC model 37601) was constructed and used.
Background And Purpose: Dose escalation has improved cancer outcomes for patients with localized prostate cancer. Targeting subprostatic tumor regions for dose intensification may further improve outcomes. Apparent Diffusion Coefficient (ADC) maps may enable early radiation response assessment and dose adaptation.
View Article and Find Full Text PDFThe tremendous cost, pain and disability associated with degenerative disc disease (DDD) makes the development of a biological agent that can mitigate the course of DDD, a critical unmet need. We have identified and reported that a single injection of a combination of recombinant human (rh) Transforming growth factor beta 1 (TGF-β1) and Connective tissue growth factor (CTGF) proteins into the injured intervertebral disc (IVD) nucleus pulposus (NP) can mediate DDD in a pre-clinical rodent model. In this study, we developed and evaluated the efficacy of a novel molecular therapy (NTG-101) containing rhTGF-β1 and rhCTGF proteins suspended in an excipient solution using in vivo models of DDD including rat-tail and chondrodystrophic (CD) canines.
View Article and Find Full Text PDFObjective:: Early changes in tumour behaviour following stereotactic radiosurgery) are potential biomarkers of response. To-date quantitative model-based measures of dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) MRI parameters have shown widely variable findings, which may be attributable to variability in image acquisition, post-processing and analysis. Big data analytic approaches are needed for the automation of computationally intensive modelling calculations for every voxel, independent of observer interpretation.
View Article and Find Full Text PDFThe mTOR signaling pathway is a central regulator of protein synthesis and cellular metabolism in response to the availability of energy, nutrients, oxygen, and growth factors. mTOR activation leads to phosphorylation of multiple downstream targets including the eukaryotic initiation factor 4E (eIF4E) binding proteins-1 and -2 (EIF4EBP1/4E-BP1 and EIF4EBP2/4E-BP2). These binding proteins inhibit protein synthesis, but are inactivated by mTOR to stimulate cell growth and metabolism.
View Article and Find Full Text PDFBackground: Cerebral Palsy (CP) is the most common physical pediatric neurodevelopmental disorder and spastic diplegic injury is its most frequent subtype. CP results in substantial neuromotor and cognitive impairments that have significant socioeconomic impact. Despite this, its underlying pathophysiological mechanisms and etiology remain incompletely understood.
View Article and Find Full Text PDFTumor heterogeneity can be elucidated by mapping subregions of the lesion with differential imaging characteristics, called habitats. Dynamic Contrast Enhanced (DCE-)MRI can depict the tumor microenvironments by identifying areas with variable perfusion and vascular permeability, since individual tumor habitats vary in the rate and magnitude of the contrast uptake and washout. Of particular interest is identifying areas of hypoxia, characterized by inadequate perfusion and hyper-permeable vasculature.
View Article and Find Full Text PDFBackground: Malignant gliomas are highly invasive, difficult to treat, and account for 2% of cancer deaths worldwide. Glioblastoma Multiforme (GBM) comprises the most common and aggressive intracranial tumor. The study hypothesis is to investigate the modification of Photodynamic Therapy (PDT) efficacy by mild hypothermia leads to increased glioma cell kill while protecting normal neuronal structures.
View Article and Find Full Text PDF