Publications by authors named "Foltete J"

Modelling population connectivity is central to biodiversity conservation and often relies on resistance surfaces reflecting multi-generational gene flow. ResistanceGA (RGA) is a common optimization framework for parameterizing these surfaces by maximizing the fit between genetic distances and cost distances using maximum likelihood population effect models. As the reliability of this framework has rarely been studied, we investigated the conditions maximizing its accuracy for both prediction and interpretation of landscape features' permeability.

View Article and Find Full Text PDF

In connectivity models, land cover types are assigned cost values characterizing their resistance to species movements. Landscape genetic methods infer these values from the relationship between genetic differentiation and cost distances. The spatial heterogeneity of population sizes, and consequently genetic drift, is rarely included in this inference although it influences genetic differentiation.

View Article and Find Full Text PDF

Habitat connectivity is a key objective of current conservation policies and is commonly modeled by landscape graphs (i.e., sets of habitat patches [nodes] connected by potential dispersal paths [links]).

View Article and Find Full Text PDF

Genetic structure, i.e. intra-population genetic diversity and inter-population genetic differentiation, is influenced by the amount and spatial configuration of habitat.

View Article and Find Full Text PDF

Graph-theoretic approaches have relevant applications in landscape genetic analyses. When species form populations in discrete habitat patches, genetic graphs can be used (a) to identify direct dispersal paths followed by propagules or (b) to quantify landscape effects on multi-generational gene flow. However, the influence of their construction parameters remains to be explored.

View Article and Find Full Text PDF

Biodiversity loss is accelerating because of unceasing human activity and land clearing for development projects (urbanisation, transport infrastructure, mining and quarrying …). Environmental policy-makers and managers in different countries worldwide have proposed the mitigation hierarchy to ensure the goal of "no net loss (NNL) of biodiversity" and have included this principle in environmental impact assessment processes. However, spatial configuration is hardly ever taken into account in the mitigation hierarchy even though it would greatly benefit from recent developments in habitat connectivity modelling incorporating landscape graphs.

View Article and Find Full Text PDF

The aesthetic potential of landscape has to be modelled to provide tools for land-use planning. This involves identifying landscape attributes and revealing individuals' landscape preferences. Landscape aesthetic judgments of individuals (n = 1420) were studied by means of a photo-based survey.

View Article and Find Full Text PDF

Travelling waves (TW) are among the most striking ecological phenomena emerging in oscillating populations. Despite much theory, understanding how real-world TW arise remains a challenge for ecology. Herein, we analyse 16-year time series of cyclic vole populations collected at 314 localities covering 2500 km² in France.

View Article and Find Full Text PDF

The aim of the present work is to assess the potential long-distance effect of a high-speed railway line on the distribution of the European tree frog (Hyla arborea) in eastern France by combining graph-based analysis and species distribution models. This combination is a way to integrate patch-level connectivity metrics on different scales into a predictive model. The approach used is put in place before the construction of the infrastructure and allows areas potentially affected by isolation to be mapped.

View Article and Find Full Text PDF

Genetic structure can be strongly affected by landscape features and variation through time and space of demographic parameters such as population size and migration rate. The fossorial water vole (Arvicola terrestris) is a cyclic species characterized by large demographic fluctuations over short periods of time. The outbreaks do not occur everywhere at the same time but spread as a wave at a regional scale.

View Article and Find Full Text PDF