Publications by authors named "Follows M"

Meta-omics is commonly used for large-scale analyses of microbial eukaryotes, including species or taxonomic group distribution mapping, gene catalog construction, and inference on the functional roles and activities of microbial eukaryotes in situ. Here, we explore the potential pitfalls of common approaches to taxonomic annotation of protistan meta-omic datasets. We re-analyze three environmental datasets at three levels of taxonomic hierarchy in order to illustrate the crucial importance of database completeness and curation in enabling accurate environmental interpretation.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how the ratios of carbon, nitrogen, and phosphorus (C:N:P) in ocean particulate matter differ from the standard Redfield Ratio, impacting global carbon storage as these particles sink into the deep ocean.
  • Researchers found distinct latitudinal patterns in C:N:P ratios along a transect in the North Pacific, linking these patterns to the composition of macromolecules like proteins, carbohydrates, and lipids in oceanic particles.
  • The findings suggest that changes in phytoplankton community structure and nutrient availability are key factors driving variations in these ratios, indicating that physiological acclimation to nutrient supply is likely responsible for the observed latitudinal trends.
View Article and Find Full Text PDF
Article Synopsis
  • Marine microbial ecologists aim to measure organismal abundance and diversity in ecosystems at a high taxonomic resolution, using various methods to capture accurate data.
  • Traditional flow cytometry estimates the number of microbial cells but lacks the ability to differentiate among many species, while amplicon sequencing offers detailed taxonomic data but often only provides relative abundances.
  • This study introduces a technique that combines genomic internal standards with amplicon sequencing, allowing for accurate absolute cell counts of marine picocyanobacteria, which aligns closely with flow cytometry results, indicating a reliable method for analyzing microbial populations in complex marine environments.
View Article and Find Full Text PDF

Microbes transform their environments using diverse enzymatic reactions. However, it remains challenging to measure microbial reaction rates in natural environments. Despite advances in global quantification of enzyme abundances, the individual relationships between enzyme abundances and their reaction rates have not been systematically examined.

View Article and Find Full Text PDF

Metabolism is the complex network of chemical reactions occurring within every cell and organism, maintaining life, mediating ecosystem processes and affecting Earth's climate. Experiments and models of microbial metabolism often focus on one specific scale, overlooking the connectivity between molecules, cells and ecosystems. Here we highlight quantitative metabolic principles that exhibit commonalities across scales, which we argue could help to achieve an integrated perspective on microbial life.

View Article and Find Full Text PDF

Phytoplankton Chl:C:N:P ratios are important from both an ecological and a biogeochemical perspective. We show that these elemental ratios can be represented by a phytoplankton physiological model of low complexity that includes major cellular macromolecular pools. In particular, our model resolves time-dependent intracellular pools of chlorophyll, proteins, nucleic acids, carbohydrates/lipids, and N and P storage.

View Article and Find Full Text PDF

Biological dinitrogen (N) fixation is a key metabolic process exclusively performed by prokaryotes, some of which are symbiotic with eukaryotes. Species of the marine haptophyte algae Braarudosphaera bigelowii harbor the N-fixing endosymbiotic cyanobacteria UCYN-A, which might be evolving organelle-like characteristics. We found that the size ratio between UCYN-A and their hosts is strikingly conserved across sublineages/species, which is consistent with the size relationships of organelles in this symbiosis and other species.

View Article and Find Full Text PDF

Coastal Antarctic marine ecosystems are significant in carbon cycling because of their intense seasonal phytoplankton blooms. Southern Ocean algae are primarily limited by light and iron (Fe) and can be co-limited by cobalamin (vitamin B). Micronutrient limitation controls productivity and shapes the composition of blooms which are typically dominated by either diatoms or the haptophyte .

View Article and Find Full Text PDF

Marine plankton play a crucial role in carbon storage, global climate, and ecosystem function. Planktonic ecosystems are embedded in patches of water that are continuously moving, stretching, and diluting. These processes drive inhomegeneities on a range of scales, with implications for the integrated ecosystem properties, but are hard to characterize.

View Article and Find Full Text PDF

Glacial-interglacial cycles constitute large natural variations in Earth's climate. The Mid-Pleistocene Transition (MPT) marks a shift of the dominant periodicity of these climate cycles from to  kyr. Recently, it has been suggested that this shift resulted from a gradual increase in the internal period (or equivalently, a decrease in the natural frequency) of the system.

View Article and Find Full Text PDF

Background: Diverse communities of microbial eukaryotes in the global ocean provide a variety of essential ecosystem services, from primary production and carbon flow through trophic transfer to cooperation via symbioses. Increasingly, these communities are being understood through the lens of omics tools, which enable high-throughput processing of diverse communities. Metatranscriptomics offers an understanding of near real-time gene expression in microbial eukaryotic communities, providing a window into community metabolic activity.

View Article and Find Full Text PDF

Marine herbivorous protists are often the dominant grazers of primary production. We developed a size-based model with flexible size-based grazing to encapsulate taxonomic and behavioral diversity. We examined individual and combined grazing impacts by three consumer sizes that span the size range of protistan grazers- 5, 50, and 200 μm-on a size-structured phytoplankton community.

View Article and Find Full Text PDF
Article Synopsis
  • The study links the composition of marine organic matter to global nutrient, oxygen, and carbon cycles, focusing on the C:N:P ratios in ocean biomes.
  • An ecosystem model illustrates that nitrogen-to-carbon (N:C) ratios vary due to physiological adjustments in phytoplankton, while nitrogen-to-phosphorus (N:P) ratios are influenced by ecological selection based on phosphorus storage abilities.
  • The latitudinal differences in N:C and N:P highlight how small plankton thrive in the subtropics with lower phosphorus storage, whereas larger plankton in nutrient-rich areas of higher latitudes have more phosphorus capacity, with overall elemental ratio variability representing a wide range of phytoplankton species.
View Article and Find Full Text PDF

Marine phytoplankton are responsible for about half of the photosynthesis on Earth. Many are mixotrophs, combining photosynthesis with heterotrophic assimilation of organic carbon, but the relative contribution of these two lifestyles is unclear. Here single-cell measurements reveal that Prochlorococcus at the base of the photic zone in the Eastern Mediterranean Sea obtain only ~20% of carbon required for growth by photosynthesis.

View Article and Find Full Text PDF

The expansive gyres of the subtropical ocean account for a significant fraction of global organic carbon export from the upper ocean. In the gyre interior, vertical mixing and the heaving of nutrient-rich waters into the euphotic layer sustain local productivity, in turn depleting the layers below. However, the nutrient pathways by which these subeuphotic layers are themselves replenished remain unclear.

View Article and Find Full Text PDF

Extensive microdiversity within , the most abundant marine cyanobacterium, occurs at scales from a single droplet of seawater to ocean basins. To interpret the structuring role of variations in genetic potential, as well as metabolic and physiological acclimation, we developed a mechanistic constraint-based modeling framework that incorporates the full suite of genes, proteins, metabolic reactions, pigments, and biochemical compositions of 69 sequenced isolates spanning the pangenome. Optimizing each strain to the local, observed physical and chemical environment along an Atlantic Ocean transect, we predicted variations in strain-specific patterns of growth rate, metabolic configuration, and physiological state, defining subtle niche subspaces directly attributable to differences in their encoded metabolic potential.

View Article and Find Full Text PDF

is both the smallest and numerically most abundant photosynthesizing organism on the planet. While thriving in the warm oligotrophic gyres, concentrations drop rapidly in higher-latitude regions. Transect data from the North Pacific show the collapse occurring at a wide range of temperatures and latitudes (temperature is often hypothesized to cause this shift), suggesting an ecological mechanism may be at play.

View Article and Find Full Text PDF

The study of connectivity patterns in networks has brought novel insights across diverse fields ranging from neurosciences to epidemic spreading or climate. In this context, betweenness centrality has demonstrated to be a very effective measure to identify nodes that act as focus of congestion, or bottlenecks, in the network. However, there is not a way to define betweenness outside the network framework.

View Article and Find Full Text PDF

In the North Pacific Ocean, nutrient rich surface waters flow south from the subpolar gyre through a transitional region and into the subtropics. Along the way, nutrients are used, recycled, and exported, leading to lower biomass and a commensurate change in ecosystem structure moving southward. We focus on the region between the two gyres (the Transition Zone) using a coupled biophysical ocean model, remote sensing, floats, and cruise data to explore the nature of the physical, biogeochemical, and ecological fields in this region.

View Article and Find Full Text PDF

Nitrogen ([Formula: see text]) fixation by heterotrophic bacteria associated with sinking particles contributes to marine N cycling, but a mechanistic understanding of its regulation and significance are not available. Here we develop a mathematical model for unicellular heterotrophic bacteria growing on sinking marine particles. These bacteria can fix [Formula: see text] under suitable environmental conditions.

View Article and Find Full Text PDF

A central need in the field of astrobiology is generalized perspectives on life that make it possible to differentiate abiotic and biotic chemical systems McKay (2008). A key component of many past and future astrobiological measurements is the elemental ratio of various samples. Classic work on Earth's oceans has shown that life displays a striking regularity in the ratio of elements as originally characterized by Redfield (Redfield 1958; Geider and La Roche 2002; Eighty years of Redfield 2014).

View Article and Find Full Text PDF

Nitrogen-fixing organisms are of importance to the environment, providing bioavailable nitrogen to the biosphere. Quantitative models have been used to complement the laboratory experiments and measurements, where such evaluations are difficult or costly. Here, we review the current state of the quantitative modeling of nitrogen-fixing organisms and ways to enhance the bridge between theoretical and empirical studies.

View Article and Find Full Text PDF

Microbial activity mediates the fluxes of greenhouse gases. However, in the global models of the marine and terrestrial biospheres used for climate change projections, typically only photosynthetic microbial activity is resolved mechanistically. To move forward, we argue that global biogeochemical models need a theoretically grounded framework with which to constrain parameterizations of diverse microbial metabolisms.

View Article and Find Full Text PDF