Fructans are water-soluble polymers of fructose in which fructose units are linked by β-(2 → 1) and/or β-(2 → 6) linkages. In plants, they are synthesized in the vacuole but have also been reported in the apoplastic sap under abiotic stress suggesting that they are involved in plasmalemma protection and in plant-microbial interactions. However, the lack of fructan-specific antibodies currently prevents further study of their role and the associated mechanisms of action, which could be elucidated thanks to their immunolocalization.
View Article and Find Full Text PDFLarge amounts of root exudates are released by plant roots into the soil. Due to their importance in regulating the rhizosphere properties, it is necessary to unravel the precise composition and function of exudates at the root-soil interface. However, obtaining root exudates without inducing artefacts is a difficult task.
View Article and Find Full Text PDFPlants have to cope with a myriad of soilborne pathogens that affect crop production and food security. The complex interactions between the root system and microorganisms are determinant for the whole plant health. However, the knowledge regarding root defense responses is limited as compared to the aerial parts of the plant.
View Article and Find Full Text PDFThe root extracellular trap (RET) has emerged as a specialized compartment consisting of root AC-DC and mucilage. However, the RET's contribution to plant defense is still poorly understood. While the roles of polysaccharides and glycoproteins secreted by root AC-DC have started to be elucidated, how the low-molecular-weight exudates of the RET contribute to root defense is poorly known.
View Article and Find Full Text PDFAphanomyces euteiches is an oomycete pathogen that causes the pea root rot. We investigated the potential role of early belowground defense in pea (susceptible plant) and faba bean (tolerant plant) at three days after inoculation. Pea and faba bean were inoculated with A.
View Article and Find Full Text PDFThe skin epidermis is continuously exposed to external aggressions, including environmental pollution. The cosmetic industry must be able to offer dedicated products to fight the effects of pollutants on the skin. We set up an experimental model that exposed skin explants maintained in culture to a pollutant mixture.
View Article and Find Full Text PDFexDNA is found in various organisms, including plants. However, plant exDNA has thus far received little attention related to its origin and role in the RET (root extracellular trap). In this study, we performed the first high-throughput genomic sequencing of plant exDNA from a with worldwide interest: soybean ( (L.
View Article and Find Full Text PDFPlants are surrounded by a diverse range of microorganisms that causes serious crop losses and requires the use of pesticides. Flax is a major crop in Normandy used for its fibres and is regularly challenged by the pathogenic fungus Fusarium oxysporum (Fo) f. sp.
View Article and Find Full Text PDFRoot border cells (BCs) and their associated secretions form a protective structure termed the root extracellular trap (RET) that plays a major role in root interactions with soil borne microorganisms. In this study, we investigated the release and morphology of BCs of using light and cryo-scanning electron microscopy (SEM). We also examined the occurrence of cell-wall glycomolecules in BCs and secreted mucilage using immunofluorescence microscopy in conjunction with anti-glycan antibodies.
View Article and Find Full Text PDFArabinogalactan protein content in both root extracellular trap and root exudates varies in three Sahelian woody plant species that are differentially tolerant to drought. At the root tip, mature root cap cells, mainly border cells (BCs)/border-like cells (BLCs) and their associated mucilage, form a web-like structure known as the "Root Extracellular Trap" (RET). Although the RET along with the entire suite of root exudates are known to influence rhizosphere function, their features in woody species is poorly documented.
View Article and Find Full Text PDFThe root cap releases cells that produce massive amounts of mucilage containing polysaccharides, proteoglycans, extracellular DNA (exDNA) and a variety of antimicrobial compounds. The released cells - known as border cells or border-like cells - and mucilage secretions form networks that are defined as root extracellular traps (RETs). RETs are important players in root immunity.
View Article and Find Full Text PDFPea (Pisum sativum) root cap releases a large number of living border cells that secrete abundant mucilage into the extracellular medium. Mucilage contains a complex mixture of polysaccharides, proteins and secondary metabolites important for its structure and function in defense. Unlike xyloglucan and cellulose, pectin and arabinogalactan proteins have been investigated in pea root and shown to be major components of border cell walls and mucilage.
View Article and Find Full Text PDFIt is well recognized that the world population is ageing rapidly. Therefore, it is important to understand ageing processes at the cellular and molecular levels to predict the onset of age-related diseases and prevent them. Recent research has focused on the identification of ageing biomarkers, including those associated with the properties of the Golgi apparatus.
View Article and Find Full Text PDFDrought-induced dehydration of vegetative tissues in lycopods affects growth and survival. Different species of Selaginella have evolved a series of specialized mechanisms to tolerate desiccation in vegetative tissues in response to water stress. In the present study, we report on the structural characterization of the leaf cell wall of the desiccation-tolerant species S.
View Article and Find Full Text PDFExtensins are cell wall glycoproteins, belonging to the hydroxyproline-rich glycoprotein (HRGP) family, which are involved in many biological functions, including plant growth and defence. Several reviews have described the involvement of HRGPs in plant immunity but little focus has been given specifically to cell wall extensins. Yet, a large set of recently published data indicates that extensins play an important role in plant protection, especially in root-microbe interactions.
View Article and Find Full Text PDFA chemical screen of plant-derived compounds identified holaphyllamine, a steroid, able to trigger defense responses in Arabidopsis thaliana and improve resistance against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. A chemical screen of 1600 plant-derived compounds was conducted and allowed the identification of a steroid able to activate defense responses in A. thaliana at a concentration of 1 µM without altering growth.
View Article and Find Full Text PDFBackground: Skin is the largest human neuroendocrine organ and hosts the second most numerous microbial population but the interaction of skin neuropeptides with the microflora has never been investigated. We studied the effect of Substance P (SP), a peptide released by nerve endings in the skin on bacterial virulence.
Methodology/principal Findings: Bacillus cereus, a member of the skin transient microflora, was used as a model.
Plant pathogens including fungi and bacteria cause many of the most serious crop diseases. The plant innate immune response is triggered upon recognition of microbe-associated molecular patterns (MAMPs) such as flagellin22 and peptidoglycan. To date, very little is known of MAMP-mediated responses in roots.
View Article and Find Full Text PDFThe skin is a natural barrier between the body and the environment and is colonised by a large number of microorganisms. Here, we report a complete analysis of the response of human skin explants to microbial stimuli. Using this ex vivo model, we analysed at both the gene and protein level the response of epidermal cells to Staphylococcus epidermidis (S.
View Article and Find Full Text PDFBorder cells and border-like cells are released from the root tip as individual cells and small aggregates, or as a group of attached cells. These are viable components of the root system that play a key role in controlling root interaction with living microbes of the rhizosphere. As their separation from root tip proceeds, the cells synthesize and secrete a hydrated mucilage that contains polysaccharides, secondary metabolites, antimicrobial proteins and extracellular DNA (exDNA).
View Article and Find Full Text PDFWe describe, for the first time, an efficient protocol based on laser capture microdissection (LCM) for the isolation of human epidermal layers for gene expression profiling using quantitative real-time PCR. Two areas enriched either in basal or granular layers were isolated by LCM. Skin biopsies were fixed in dry ice-cooled isopentane, cryosectioned and stained before the laser procedure.
View Article and Find Full Text PDFRoot tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells.
View Article and Find Full Text PDFThe Golgi apparatus of eukaryotic cells is known for its central role in the processing, sorting, and transport of proteins to intra- and extra-cellular compartments. In plants, it has the additional task of assembling and exporting the non-cellulosic polysaccharides of the cell wall matrix including pectin and hemicelluloses, which are important for plant development and protection. In this review, we focus on the biosynthesis of complex polysaccharides of the primary cell wall of eudicotyledonous plants.
View Article and Find Full Text PDFXyloglucan is the dominant hemicellulosic polysaccharide of the primary cell wall of dicotyledonous plants that plays a key role in plant development. It is well established that xyloglucan is assembled within Golgi stacks and transported in Golgi-derived vesicles to the cell wall. It is also known that the biosynthesis of xyloglucan requires the action of glycosyltransferases including α-1,6-xylosyltransferase, β-1,2-galactosyltransferase and α-1,2-fucosyltransferase activities responsible for the addition of xylose, galactose and fucose residues to the side chains.
View Article and Find Full Text PDF