Publications by authors named "Foks A"

Cytokines are involved in all stages of atherosclerosis, generally contributing to disease progression. Previously, members of the Interleukin (IL)-6 cytokine family, such as IL-6, oncostatin M, and cardiotrophin-1, have been extensively studied in atherosclerosis. However, the role of leukemia inhibitory factor (LIF), member of the IL-6 family, and its receptor (LIFR), remains to be further elucidated.

View Article and Find Full Text PDF

Background And Aims: Mast cell-derived heparin proteoglycans (HEP-PG) can be mimicked by bioconjugates carrying antithrombotic and anti-inflammatory properties. The dual antiplatelet and anticoagulant (APAC) construct administered, either locally or intravenously (i.v.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to understand the immune cell composition in human atherosclerotic plaques, which differs significantly from what is observed in mouse models, often used for research.
  • Single-cell RNA sequencing was employed to reveal a diverse immune cell landscape in human plaques, primarily consisting of T-cells, highlighting activation and memory formation that aren't adequately represented in mice.
  • The findings suggest that traditional mouse models may not effectively translate to human atherosclerosis, particularly regarding activated T-cell responses, posing questions about their relevance in studying adaptive immune cell behavior.
View Article and Find Full Text PDF

Background: Atherosclerosis, the main underlying pathology of cardiovascular disease, is a chronic inflammatory disease characterized by lipid accumulation and immune cell responses in the vascular wall, resulting in plaque formation. It is well-known that atherosclerosis prevalence and manifestation vary by sex. However, sexual dimorphism in the immune landscape of atherosclerotic plaques has up to date not been studied at high-resolution.

View Article and Find Full Text PDF

Adaptive immunity plays a profound role in atherosclerosis pathogenesis by regulating antigen-specific responses, inflammatory signaling and antibody production. However, as we age, our immune system undergoes a gradual functional decline, a phenomenon termed "immunosenescence". This decline is characterized by a reduction in proliferative naïve B- and T cells, decreased B- and T cell receptor repertoire and a pro-inflammatory senescence associated secretory profile.

View Article and Find Full Text PDF

Background: Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects.

Methods: We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit β5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit β1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr and APOE*3-Leiden.

View Article and Find Full Text PDF

Aims: Aging is a dominant driver of atherosclerosis and induces a series of immunological alterations, called immunosenescence. Given the demographic shift towards elderly, elucidating the unknown impact of aging on the immunological landscape in atherosclerosis is highly relevant. While the young Western diet-fed Ldlr-deficient (Ldlr-/-) mouse is a widely used model to study atherosclerosis, it does not reflect the gradual plaque progression in the context of an aging immune system as occurs in humans.

View Article and Find Full Text PDF

Atherosclerosis is characterized by the accumulation of lipids and immune cells, including mast cells and B cells, in the arterial wall. Mast cells contribute to atherosclerotic plaque growth and destabilization upon active degranulation. The FcεRI-IgE pathway is the most prominent mast cell activation route.

View Article and Find Full Text PDF

Atherosclerosis is a lipid-driven chronic inflammatory disease; however, whether it can be classified as an autoimmune disease remains unclear. In this study, we applied single-cell T cell receptor seqencing (scTCR-seq) on human carotid artery plaques and matched peripheral blood mononuclear cell samples to assess the extent of TCR clonality and antigen-specific activation within the various T cell subsets. We observed the highest degree of plaque-specific clonal expansion in effector CD4 T cells, and these clonally expanded T cells expressed genes such as , and , indicative of recent TCR engagement, suggesting antigen-specific stimulation.

View Article and Find Full Text PDF

Mast cells have been associated with the progression and destabilization of advanced atherosclerotic plaques. Reducing intraplaque mast cell accumulation upon atherosclerosis progression could be a potent therapeutic strategy to limit plaque destabilization. Leukotriene B (LTB) has been reported to induce mast cell chemotaxis in vitro.

View Article and Find Full Text PDF

Sepsis is a life-threatening condition driven by the dysregulation of the host immune response to an infection. The complex and interacting mechanisms underlying sepsis remain not fully understood. By integrating prior knowledge from literature using mathematical modelling techniques, we aimed to obtain a deeper mechanistic insight into sepsis pathogenesis and to evaluate promising novel therapeutic targets, with a focus on Toll-like receptor 4 (TLR4)-mediated pathways.

View Article and Find Full Text PDF
Article Synopsis
  • Immunomodulatory compounds are being tested for treating cardiovascular disease due to atherosclerosis, focusing on large patient groups and recurrent events as endpoints.
  • The study examined how aging and smoking affect the immune system, aiming to find biomarkers to differentiate populations for future trials.
  • Significant findings include age-related decreases in certain T cell types and inflammatory changes in heavy smokers, indicating these groups may benefit from targeted immunomodulatory therapies.
View Article and Find Full Text PDF

Background And Aims: Increasing evidence has shown that immune checkpoint molecules of the T-cell immunoglobulin and mucin domain (Tim) family are associated with diverse physiologic and pathologic processes. Previous studies of the role of Tim-1 in atherosclerosis using anti-Tim-1 antibodies have yielded contradictory results. We thus aimed to investigate atherosclerosis development in Tim-1 deficient mice.

View Article and Find Full Text PDF

B and T cells are interconnected in the T follicular helper-germinal center B cell (T-GC B cell) axis, which is hyperactive during atherosclerosis development and loss of control along this axis results in exacerbated atherosclerosis. Inhibition of the T-GC B cell axis can be achieved by providing negative co-stimulation to T cells through the PD-1/PD-L1 pathway. Therefore, we investigated a novel therapeutic strategy using PD-L1-expressing B cells to inhibit atherosclerosis.

View Article and Find Full Text PDF

We have previously shown that treatment with third-generation antisense oligonucleotides against miR-494-3p (3GA-494) reduces atherosclerotic plaque progression and stabilizes lesions, both in early and established plaques, with reduced macrophage content in established plaques. Within the plaque, different subtypes of macrophages are present. Here, we aimed to investigate whether miR-494-3p directly influences macrophage polarization and activation.

View Article and Find Full Text PDF

Signaling through the coinhibitory programmed death (PD)-1/PD-L1 pathway regulates T cell responses and can inhibit ongoing immune responses. Inflammation is a key process in the development of atherosclerosis, the underlying cause for the majority of cardiovascular diseases. Dampening the excessive immune response that occurs during atherosclerosis progression by promoting PD-1/PD-L1 signaling may have a high therapeutic potential to limit disease burden.

View Article and Find Full Text PDF

Aging is considered to be an important risk factor for several inflammatory diseases. B cells play a major role in chronic inflammatory diseases by antibody secretion, antigen presentation and T cell regulation. Different B cell subsets have been implicated in infections and multiple autoimmune diseases.

View Article and Find Full Text PDF

Introduction: Allergen-specific immunotherapy (AIT) is a crucial therapy for allergic rhinitis. However, the long-term effectiveness of AIT remains to be explored.

Aim: To evaluate clinical and immunological long-term effects of sublingual allergen immunotherapy (SLIT) for common inhalant allergens in elderly patients with allergic rhinitis.

View Article and Find Full Text PDF

Aims: CD8+ T cells can differentiate into subpopulations that are characterized by a specific cytokine profile, such as the Tc17 population that produces interleukin-17. The role of this CD8+ T-cell subset in atherosclerosis remains elusive. In this study, we therefore investigated the contribution of Tc17 cells to the development of atherosclerosis.

View Article and Find Full Text PDF

Aims: A hallmark of advanced atherosclerosis is inadequate immunosuppression by regulatory T (Treg) cells inside atherosclerotic lesions. Dyslipidemia has been suggested to alter Treg cell migration by affecting the expression of specific membrane proteins, thereby decreasing Treg cell migration towards atherosclerotic lesions. Besides membrane proteins, cellular metabolism has been shown to be a crucial factor in Treg cell migration.

View Article and Find Full Text PDF

Cardiovascular diseases form the most common cause of death worldwide, with atherosclerosis as main etiology. Atherosclerosis is marked by cholesterol rich lipoprotein deposition in the artery wall, evoking a pathogenic immune response. Characteristic for the disease is the pathogenic accumulation of macrophages in the atherosclerotic lesion, which become foam cells after ingestion of large quantities of lipoproteins.

View Article and Find Full Text PDF

We have previously shown that third-generation antisense (3GA) inhibition of 14q32 microRNA (miRNA)-494 reduced early development of atherosclerosis. However, patients at risk of atherosclerotic complications generally present with advanced and unstable lesions. Here, we administered 3GAs against 14q32 miRNA-494 (3GA-494), miRNA-329 (3GA-329), or a control (3GA-ctrl) to mice with advanced atherosclerosis.

View Article and Find Full Text PDF

Aims: The immune system is strongly involved in atherosclerosis and immune regulation generally leads to attenuated atherosclerosis. B- and T-lymphocyte attenuator (BTLA) is a novel co-receptor that negatively regulates the activation of B and T cells; however, there have been no reports of BTLA and its function in atherosclerosis or cardiovascular disease (CVD). We aimed to assess the dominant BTLA expressing leucocyte in CVD patients and to investigate whether BTLA has a functional role in experimental atherosclerosis.

View Article and Find Full Text PDF

The presence of mast cells in human atherosclerotic plaques has been associated with adverse cardiovascular events. Mast cell activation, through the classical antigen sensitized-IgE binding to their characteristic Fcε-receptor, causes the release of their cytoplasmic granules. These granules are filled with neutral proteases such as tryptase, but also with histamine and pro-inflammatory mediators.

View Article and Find Full Text PDF