Publications by authors named "Fokkens M"

Currently, routine diagnostics for spinocerebellar ataxia (SCA) look for polyQ repeat expansions and conventional variations affecting the proteins encoded by known SCA genes. However, ~40% of the patients still remain without a genetic diagnosis after routine tests. Increasing evidence suggests that variations in the enhancer regions of genes involved in neurodegenerative disorders can also cause disease.

View Article and Find Full Text PDF

Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Genetic testing for SCA leads to diagnosis, prognosis and risk assessment for patients and their family members. While advances in sequencing and computing technologies have provided researchers with a rapid expansion in the genetic test content that can be used to unravel the genetic causes that underlie diseases, the large number of variants with unknown significance (VUSes) detected represent challenges.

View Article and Find Full Text PDF

Pathogenic variants in PINK1 cause early-onset Parkinson's disease. Although many PINK1 variants have been reported, the clinical significance is uncertain for the majority of them. To gain insights into the consequences of PINK1 missense variants in a systematic manner, we selected 50 PINK1 missense variants from patient- and population-wide databases and systematically classified them using Sherloc, a comprehensive framework for variant interpretation based on ACMG-AMP guidelines.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction plays a prominent role in the pathogenesis of Parkinson's disease (PD), and several genes linked to familial PD, including PINK1 (encoding PTEN-induced putative kinase 1 [PINK1]) and PARK2 (encoding the E3 ubiquitin ligase Parkin), are directly involved in processes such as mitophagy that maintain mitochondrial health. The dominant p.D620N variant of vacuolar protein sorting 35 ortholog (VPS35) gene is also associated with familial PD but has not been functionally connected to PINK1 and PARK2.

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF) is a versatile protein that plays a role in inflammation, autoimmune diseases and cancers. Development of novel inhibitors will enable further exploration of MIF as a drug target. In this study, we investigated structure-activity relationships of MIF inhibitors using a MIF tautomerase activity assay to measure binding.

View Article and Find Full Text PDF

The autosomal dominant cerebellar ataxias, referred to as spinocerebellar ataxias in genetic nomenclature, are a rare group of progressive neurodegenerative disorders characterized by loss of balance and coordination. Despite the identification of numerous disease genes, a substantial number of cases still remain without a genetic diagnosis. Here, we report five novel spinocerebellar ataxia genes, FAT2, PLD3, KIF26B, EP300, and FAT1, identified through a combination of exome sequencing in genetically undiagnosed families and targeted resequencing of exome candidates in a cohort of singletons.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, α-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23.

View Article and Find Full Text PDF

The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 13 (SCA13) is an autosomal dominantly inherited neurodegenerative disorder of the cerebellum caused by mutations in the voltage gated potassium channel KCNC3. To identify novel pathogenic SCA13 mutations in KCNC3 and to gain insights into the disease prevalence in the Netherlands, we sequenced the entire coding region of KCNC3 in 848 Dutch cerebellar ataxia patients with familial or sporadic origin. We evaluated the pathogenicity of the identified variants by co-segregation analysis and in silico prediction followed by biochemical and electrophysiological studies.

View Article and Find Full Text PDF

We have recently identified missense mutations in prodynorphin (PDYN), the precursor to dynorphin opioid peptides, as the cause for spinocerebellar ataxia (SCA23) in Dutch ataxia cases. We report a screen of PDYN for mutations in 371 cerebellar ataxia cases, which had a positive family history; most are of French origin. Sequencing revealed three novel putative missense mutations and one heterozygous two-base pair deletion in four independent SCA patients.

View Article and Find Full Text PDF

Objective: To identify the causative gene for the neurodegenerative disorder spinocerebellar ataxia type 19 (SCA19) located on chromosomal region 1p21-q21.

Methods: Exome sequencing was used to identify the causal mutation in a large SCA19 family. We then screened 230 ataxia families for mutations located in the same gene (KCND3, also known as Kv4.

View Article and Find Full Text PDF

Background And Purpose: Induction of cellular migration is the primary effect of chemokine receptor activation. However, several chemokine receptor-like proteins bind chemokines without subsequent induction of intracellular signalling and chemotaxis. It has been suggested that they act as chemokine scavengers, which may control local chemokine levels and contribute to the function of chemokines during inflammation.

View Article and Find Full Text PDF

Aims: Previous studies on the therapeutic time window for intravascular administration of bone marrow stem cells (BMSCs) after stroke have shown that early intervention (from 3 h after onset) in the middle cerebral artery occlusion (MCAO) rat model is the most effective approach to reduce ischaemic lesion size. We have confirmed these observations but noticed that 2 weeks after transplantation, almost none of the grafted BMSCs could be detected in or around the lesion. The present experiments aimed to assess the fate and kinetics of intravascularly injected BMSCs shortly after administration in correlation to the development of the ischaemic lesion after MCAO.

View Article and Find Full Text PDF

[structure: see text] Molecular clips functionalized by phosphonate or phosphate groups bind thiamine diphosphate (TPP) and S-adenosylmethionine (SAM) with high affinity in water; both sulfur-based cofactors transfer organic groups to biomolecules. For TPP, various analytical tools point toward a simultaneous insertion of both heterocyclic rings into the electron-rich clip cavity. Similarly, SAM is also embedded with its sulfonium moiety inside the receptor cavity.

View Article and Find Full Text PDF

Lysine and arginine play a key role in numerous biological recognition processes controlling, inter alia, gene regulation, glycoprotein targeting and vesicle transport. They are also found in signaling peptide sequences responsible, e.g.

View Article and Find Full Text PDF

A new class of receptor molecules is presented that is highly selective for N-alkylpyridinium ions and electron-poor aromatics. Its key feature is the combination of a well-preorganized molecular clip with an electron-rich inner cavity and strategically placed, flanking bis-phosphonate monoester anions. This shape and arrangement of binding sites attracts predominantly flat electron-poor aromatics in water, binds them mainly by pi-cation, pi-pi, CH-pi, and hydrophobic interactions, and leads to their highly efficient desolvation.

View Article and Find Full Text PDF