Publications by authors named "Fokke Lindeboom"

Objectives: Measurement of plasma albumin is pivotal for clinical decision-making in patients with chronic kidney disease (CKD). Routinely used methods as bromocresol green (BCG) and bromocresol purple (BCP) can suffer from aselectivity, but the impact of aselectivity on the accuracy of plasma albumin results of CKD-patients is still unknown. Therefore, we evaluated the performance of BCG-, BCP- and JCTLM-endorsed immunological methods in patients with various stages of CKD.

View Article and Find Full Text PDF

Objective: To design a culture method allowing the quantitative and qualitative analysis of terminal erythroid differentiation.

Methods: Primary erythroid progenitors derived either from mouse tissues or from human umbilical cord blood were differentiated using hanging drop cultures and compared to methylcellulose cultures. Cultured cells were analyzed by FACS to assess differentiation.

View Article and Find Full Text PDF

Transcription factor GATA-1 plays an important role in gene regulation during the development of erythroid cells. Several reports suggest that GATA-1 plays multiple roles in survival, proliferation, and differentiation of erythroid cells. However, little is known about the relationship between the level of GATA-1 expression and its nature of multifunction to affect erythroid cell fate.

View Article and Find Full Text PDF

The expansion and differentiation of hematopoietic progenitors is regulated by cytokine and growth factor signaling. To examine how signal transduction controls the gene expression program required for progenitor expansion, we screened ATLAS filters with polysome-associated mRNA derived from erythroid progenitors stimulated with erythropoietin and/or stem cell factor. The putative proto-oncogene nucleoside diphosphate kinase B (ndpk-B or nm23-M2) was identified as an erythropoietin and stem cell factor target gene.

View Article and Find Full Text PDF

Gata1 is a transcription factor essential for erythropoiesis. Erythroid cells lacking Gata1 undergo apoptosis, while overexpression of Gata1 results in a block in erythroid differentiation. However, erythroid cells overexpressing Gata1 differentiate normally in vivo when in the presence of wild-type cells.

View Article and Find Full Text PDF

The transcription factor Gata1 is essential for the development of erythroid cells. Consequently, Gata1 null mutants die in utero due to severe anaemia. Outside the haematopoietic system, Gata1 is only expressed in the Sertoli cells of the testis.

View Article and Find Full Text PDF