Continuous glucose monitors (CGMs) are a tool that can reduce the burden of self-monitoring of glucose values in children and adults with type 1 diabetes (T1D), are associated with improved glycemic control, and are associated with reduced fear of hypoglycemia. Unfortunately, disparities in access to CGM exist and rates of CGM access in Alabama in 2019 were below national averages. We aimed to increase CGM access and reduce disparities in access by race, insurance status, and high-risk diabetes status.
View Article and Find Full Text PDFVoltage sensitive fluorescent dyes (VSDs) are important tools for probing signal transduction in neurons and other excitable cells. The impact of these highly lipophilic sensors has, however, been limited due to the lack of cell-specific targeting methods in brain tissue or living animals. We address this key challenge by introducing a nongenetic molecular platform for cell- and molecule-specific targeting of synthetic VSDs in the brain.
View Article and Find Full Text PDFNeurobiol Sleep Circadian Rhythms
January 2019
Mitochondrial encephalomyopathies (ME) are complex, incurable diseases characterized by severe bioenergetic distress that can affect the function of all major organ systems but is especially taxing to neuromuscular tissues. Animal models of MEs are rare, but the mutant is a stable, well-characterized genetic line that accurately models progressive human mitochondrial diseases such as Maternally-Inherited Leigh Syndrome (MILS), Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP), and Familial Bilateral Striatal Necrosis (FBSN). While it is established that this model exhibits important hallmarks of ME, including excess cellular and mitochondrial reactive oxygen species, shortened lifespan, muscle degeneration, and stress-induced seizures, it is unknown whether it exhibits defects in sleep or circadian function.
View Article and Find Full Text PDFSeizures are a feature not only of the many forms of epilepsy, but also of global metabolic diseases such as mitochondrial encephalomyopathy (ME) and glycolytic enzymopathy (GE). Modern anti-epileptic drugs (AEDs) are successful in many cases, but some patients are refractory to existing AEDs, which has led to a surge in interest in clinically managed dietary therapy such as the ketogenic diet (KD). This high-fat, low-carbohydrate diet causes a cellular switch from glycolysis to fatty acid oxidation and ketone body generation, with a wide array of downstream effects at the genetic, protein, and metabolite level that may mediate seizure protection.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2017
Drosophila melanogaster CRYPTOCHROME (CRY) mediates behavioral and electrophysiological responses to blue light coded by circadian and arousal neurons. However, spectroscopic and biochemical assays of heterologously expressed CRY suggest that CRY may mediate functional responses to UV-A (ultraviolet A) light as well. To determine the relative contributions of distinct phototransduction systems, we tested mutants lacking CRY and mutants with disrupted opsin-based phototransduction for behavioral and electrophysiological responses to UV light.
View Article and Find Full Text PDFEffective therapies are lacking for mitochondrial encephalomyopathies (MEs). MEs are devastating diseases that predominantly affect the energy-demanding tissues of the nervous system and muscle, causing symptoms such as seizures, cardiomyopathy, and neuro- and muscular degeneration. Even common anti-epileptic drugs which are frequently successful in ameliorating seizures in other diseases tend to have a lower success rate in ME, highlighting the need for novel drug targets, especially those that may couple metabolic sensitivity to neuronal excitability.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2015
Blue light activation of the photoreceptor CRYPTOCHROME (CRY) evokes rapid depolarization and increased action potential firing in a subset of circadian and arousal neurons in Drosophila melanogaster. Here we show that acute arousal behavioral responses to blue light significantly differ in mutants lacking CRY, as well as mutants with disrupted opsin-based phototransduction. Light-activated CRY couples to membrane depolarization via a well conserved redox sensor of the voltage-gated potassium (K(+)) channel β-subunit (Kvβ) Hyperkinetic (Hk).
View Article and Find Full Text PDFWe conducted an exploratory study to examine the resting electroencephalography (EEG) correlates of pseudoneglect, a phenomenon wherein neurologically intact individuals show greater attentional bias toward the left side compared with the right side of space. We took the resting EEG of 21 college students for 5 min and then had them complete a computerized line perception task, during which we asked them to judge the midpoint of horizontal lines on the screen. We computed EEG asymmetry measures for theta, alpha, beta, and gamma frequency bands for each of eight locations (right electrode activity-left electrode activity in the analogous location) and separately regressed these onto the degree of pseudoneglect using stepwise multiple regression analyses.
View Article and Find Full Text PDFLight-responsive neural activity in central brain neurons is generally conveyed through opsin-based signaling from external photoreceptors. Large lateral ventral arousal neurons (lLNvs) in Drosophila melanogaster increase action potential firing within seconds in response to light in the absence of all opsin-based photoreceptors. Light-evoked changes in membrane resting potential occur in about 100 milliseconds.
View Article and Find Full Text PDFLight-activated large ventral lateral clock neurons (large LNv) modulate behavioral arousal and sleep in Drosophila while their counterparts, the small LNv (s-LNv) are important for circadian behavior. Recently, it has been proposed that the pattern of day-night locomotor behavioral activity is mediated by two anatomically distinct oscillators composed of a morning oscillator in the small LNv and an evening oscillator in the lateral dorsal neurons and an undefined number of dorsal pacemaker neurons. This contrasts with a circuit described by network models which are not as anatomically constrained.
View Article and Find Full Text PDFInvestigation of the mechanistic bases and physiological importance of cAMP regulation of HCN channels has exploited an arginine to glutamate mutation in the nucleotide-binding fold, an approach critically dependent on the mutation selectively lowering the channel's nucleotide affinity. In apparent conflict with this, in intact Xenopus oocytes, HCN and HCN-RE channels exhibit qualitatively and quantitatively distinct responses to the tyrosine kinase inhibitor, genistein -- the estrogenic isoflavonoid strongly depolarizes the activation mid-point of HCN1-R538E, but not HCN1 channels (+9.8 mV + or - 0.
View Article and Find Full Text PDFBackground: Large ventral lateral clock neurons (lLNvs) exhibit higher daytime-light-driven spontaneous action-potential firing rates in Drosophila, coinciding with wakefulness and locomotor-activity behavior. To determine whether the lLNvs are involved in arousal and sleep/wake behavior, we examined the effects of altered electrical excitation of the LNvs.
Results: LNv-hyperexcited flies reverse the normal day-night firing pattern, showing higher lLNv firing rates at night and pigment-dispersing-factor-mediated enhancement of nocturnal locomotor-activity behavior and reduced quantity and quality of sleep.
Drosophila melanogaster is a leading genetic model system in nervous system development and disease research. Using the power of fly genetics in traumatic axonal injury research will significantly speed up the characterization of molecular processes that control axonal regeneration in the CNS. We developed a versatile and physiologically robust preparation for the long-term culture of the whole Drosophila brain.
View Article and Find Full Text PDFHyperpolarization-activated pacemaker currents (I(H)) contribute to the subthreshold properties of excitable cells and thereby influence behaviors such as synaptic integration and the appearance and frequency of intrinsic rhythmic activity. Accordingly, modulation of I(H) contributes to cellular plasticity. Although I(H) activation is regulated by a plethora of neurotransmitters, including some that act via phospholipase C (PLC), the only second messengers known to alter I(H) voltage dependence are cAMP, internal protons (H+(I)s), and phosphatidylinositol-4,5-phosphate.
View Article and Find Full Text PDFThe maize r locus encodes a transcription factor that regulates the developmental expression of the plant pigment anthocyanin. In an unusual example of gene regulatory diversity, the R-sc (Sc, strong seed color) and the R-p (P, plant color) alleles of r have nonoverlapping tissue specificity and nonhomologous 5' flanking sequences. Heterozygotes between wild-type P and Sc mutants with Ds6 transposable element inserts (r-sc:m::Ds6 or sc:m) produce colored seed derivatives (Sc+) during meiotic recombination.
View Article and Find Full Text PDFObjective: The effect of experimenter expectancy was investigated on the resistance to respiratory air flow, measured as total respiratory resistance (Rt) in healthy individuals.
Method: Each of three naive experimental assistants collected air flow resistance responses from 30 subjects who they had been told were either likely or unlikely to respond to the suggestion of breathing difficulty.
Results: The subjects were assigned to the two conditions at random.