Purpose Of Review: To review recent publications linking the intestine to cardiovascular disease.
Recent Findings: Aromatic amino acid-derived metabolites produced by gut-bacteria were identified that increased or decreased the risk of cardiovascular events. Dietary phenylalanine was metabolized to phenylacetic acid by gut microbes, and converted into phenylacetylglutamine by the host, which increased thrombosis potential via adrenergic receptors and was associated with increased major adverse cardiovascular events.
Purpose Of Review: To explore the multiple roles that lysophosphatidic acid (LPA) plays in vascular disease and atherosclerosis.
Recent Findings: A high-fat high-cholesterol diet decreases antimicrobial activity in the small intestine, which leads to increased levels of bacterial lipopolysaccharide in the mucus of the small intestine and in plasma that increase systemic inflammation, and enhance dyslipidemia and aortic atherosclerosis. Decreasing LPA production in enterocytes reduces the impact of the diet.
Conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA) by autotaxin, a secreted phospholipase D, is a major pathway for producing LPA. We previously reported that feeding Ldlr mice standard mouse chow supplemented with unsaturated LPA or lysophosphatidylcholine qualitatively mimicked the dyslipidemia and atherosclerosis induced by feeding a Western diet (WD). Here, we report that adding unsaturated LPA to standard mouse chow also increased the content of reactive oxygen species and oxidized phospholipids (OxPLs) in jejunum mucus.
View Article and Find Full Text PDFPurpose Of Review: This review explores mechanisms by which gut-derived bacteriallipopolysaccharide (LPS) and oxidized phospholipids contribute to chronic systemic inflammation and atherosclerosis.
Recent Findings: Gut-derived LPS enters through the small intestine via two distinct pathways that involve high density lipoproteins (HDL) and chylomicrons. Gut-derived LPS can bind to the LPS-binding protein (LBP) and to HDL 3 in the small intestine and travel through the portal vein to the liver where it does not elicit an inflammatory reaction, and is inactivated or it can bind to HDL 2 and travel through the portal vein to the liver where it elicits an inflammatory reaction.
Cell Mol Gastroenterol Hepatol
April 2022
Background And Aims: Phagocytosis (efferocytosis) of apoptotic neutrophils by macrophages anchors the resolution of intestinal inflammation. Efferocytosis prevents secondary necrosis and inhibits further inflammation, and also reprograms macrophages to facilitate tissue repair and promote resolution function. Macrophage efferocytosis and efferocytosis-dependent reprogramming are implicated in the pathogenesis of inflammatory bowel disease.
View Article and Find Full Text PDFNovel therapeutic strategies are needed to attenuate increased systemic and gut inflammation that contribute to morbidity and mortality in chronic HIV infection despite potent antiretroviral therapy (ART). The goal of this study is to use preclinical models of chronic treated HIV to determine whether the antioxidant and anti-inflammatory apoA-I mimetic peptides 6F and 4F attenuate systemic and gut inflammation in chronic HIV. We used two humanized murine models of HIV infection and gut explants from 10 uninfected and 10 HIV infected persons on potent ART, to determine the in vivo and ex vivo impact of apoA-I mimetics on systemic and intestinal inflammation in HIV.
View Article and Find Full Text PDFWe previously reported that adding a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F) to a Western diet (WD) ameliorated systemic inflammation. To determine the mechanism(s) responsible for these observations, Ldlr mice were fed chow, a WD, or WD plus Tg6F. We found that a WD altered the taxonomic composition of bacteria in jejunum mucus.
View Article and Find Full Text PDFObjective: We investigated whether apolipoprotein A-I (apoA-I) mimetic peptides 4F and 6F can be a novel therapeutic strategy to reduce blood and gut bioactive lipids, proinflammatory effects of endotoxin (LPS) and aberrant activation of cyclooxygenase 2 (COX-2) as instigators of increased risk for cardiometabolic disease in chronic treated HIV.
Methods: We used two humanized murine models of chronic treated HIV infection (n = 109 mice) and gut explants from HIV infected (n = 10) persons to determine whether Tg6F and 4F attenuate in vivo and ex vivo increased blood and gut bioactive lipids (measured by mass spectrometry) and intestinal protein levels of COX-2 (measured by immunoassays) in chronic treated HIV.
Results: In these models of HIV, when compared to HIV-1 infected mice on antiretroviral therapy (ART) alone, oral Tg6F in combination with ART attenuated increases in plasma and gut bioactive lipids (and particularly COX lipids) and intestinal COX-2.
Objectives: Despite antiretroviral therapy (ART), there is an unmet need for therapies to mitigate immune activation in HIV infection. The goal of this study is to determine whether the apoA-I mimetics 6F and 4F attenuate macrophage activation in chronic HIV.
Design: Preclinical assessment of the in-vivo impact of Tg6F and the ex-vivo impact of apoA-I mimetics on biomarkers of immune activation and gut barrier dysfunction in treated HIV.
Peptides have many advantages over traditional therapeutics, including small molecules and other biologics, because of their low toxicity and immunogenicity, while still exhibiting efficacy. This review discusses the benefits and mechanism of action of apolipoprotein mimetic peptides in tumor biology and their potential utility in treating various cancers. Among lipoproteins in the circulation, high-density lipoprotein (HDL) and its constituents including apolipoprotein A-I (apoA-I; the predominant protein in HDL), apoJ, and apoE, harbor anti-tumorigenic activities.
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) is a fatal disease characterized by increased mean pulmonary arterial pressure. Elevated plasma and lung concentrations of oxidized lipids, including 15-hydroxyeicosatetraenoic acid (15-HETE), have been demonstrated in patients with PAH and animal models. We previously demonstrated that feeding mice with 15-HETE is sufficient to induce pulmonary hypertension, but the mechanisms remain unknown.
View Article and Find Full Text PDFPurpose Of Review: To discuss recent findings on the importance of the small intestine in modulating metabolism and inflammation in atherosclerosis and cancer.
Recent Findings: Integrin β7 natural gut intraepithelial T cells modulated metabolism and accelerated atherosclerosis in mice. Reducing the generation of lysophospholipids in the small intestine mimicked bariatric surgery and improved diabetes.
Cyclooxygenase 2 (Cox2) total knockout and myeloid knockout (MKO) mice develop Crohn's-like intestinal inflammation when fed cholate-containing high fat diet (CCHF). We demonstrated that CCHF impaired intestinal barrier function and increased translocation of endotoxin, initiating TLR/MyD88-dependent inflammation in Cox2 KO but not WT mice. Cox2 MKO increased pro-inflammatory mediators in LPS-activated macrophages, and in the intestinal tissue and plasma upon CCHF challenge.
View Article and Find Full Text PDFObjective: Obesity has increased to pandemic levels and enhanced understanding of adipose regulation is required for new treatment strategies. Although bone morphogenetic proteins (BMPs) influence adipogenesis, the effect of BMP antagonists such as Noggin is largely unknown. The aim of the study was to define the role of Noggin, an extracellular BMP inhibitor, in adipogenesis.
View Article and Find Full Text PDFObjective: To investigate the novel role of Paraoxonase 2 (PON2) in modulating acute myocardial ischemia-reperfusion injury (IRI).
Approach: IRI was induced both in vivo and ex vivo in male, C57BL6/J (WT) and PON2-deficient (PON-def) mice. In addition, in vitro hypoxia-reoxygenation injury (HRI) was induced in H9c2 cells expressing empty vector (H9c2-EV) or human PON2 (H9c2-hPON2) ± LY294002 (a potent PI3K inhibitor).
Antioxidants (Basel)
January 2019
(1) Background: Paraoxonase 2 (PON2) is a ubiquitously expressed protein localized to endoplasmic reticulum and mitochondria. Previous studies have shown that PON2 exhibits anti-oxidant and anti-inflammatory functions, and PON2-deficient (PON2-def) mice are more susceptible to atherosclerosis. Furthermore, PON2 deficiency leads to impaired mitochondrial function.
View Article and Find Full Text PDFAfter crossing floxed stearoyl-CoA desaturase-1 () mice with LDL receptor-null () mice, and then Villin Cre () mice, enterocyte expression in // mice was reduced 70%. On Western diet (WD), / mice gained more weight than // mice ( < 0.0023).
View Article and Find Full Text PDFHaving demonstrated that apolipoprotein A-I (apoA-I) mimetic peptides ameliorate cancer in mouse models, we sought to determine the mechanism for the anti-tumorigenic function of these peptides. CT-26 cells (colon cancer cells that implant and grow into tumors in the lungs) were injected into wild-type BALB/c mice. The day after injection, mice were either continued on chow or switched to chow containing 0.
View Article and Find Full Text PDFOvarian cancer (OC) is most lethal malignancy among all gynecological cancer. Large bodies of evidences suggest that mitochondrial-derived ROS play a critical role in the development and progression of OC. Paraoxonase 2 (PON2) is a membrane-associated lactonase with anti-oxidant properties.
View Article and Find Full Text PDFAdequate availability of cellular building blocks, including lipids, is a prerequisite for cellular proliferation, but excess dietary lipids are linked to increased cancer risk. Despite these connections, specific regulatory relationships between membrane composition, intestinal stem cell (ISC) proliferation, and tumorigenesis are unclear. We reveal an unexpected link between membrane phospholipid remodeling and cholesterol biosynthesis and demonstrate that cholesterol itself acts as a mitogen for ISCs.
View Article and Find Full Text PDFEndothelial cells transduce mechanical forces from blood flow into intracellular signals required for vascular homeostasis. Here we show that endothelial NOTCH1 is responsive to shear stress, and is necessary for the maintenance of junctional integrity, cell elongation, and suppression of proliferation, phenotypes induced by laminar shear stress. NOTCH1 receptor localizes downstream of flow and canonical NOTCH signaling scales with the magnitude of fluid shear stress.
View Article and Find Full Text PDFThe vascular endothelium is critical for induction of appropriate lineage differentiation in organogenesis. In this study, we report that dysfunctional pulmonary endothelium, resulting from the loss of matrix Gla protein (MGP), causes ectopic hepatic differentiation in the pulmonary epithelium. We demonstrate uncontrolled induction of the hepatic growth factor (HGF) caused by dysregulated cross talk between pulmonary endothelium and epithelium in -null lungs.
View Article and Find Full Text PDF