The interaction between inhaled drug-loaded nanoparticles and pulmonary surfactant (PS) is critical for the efficacy and safety of inhaled nanomedicines. Here, we investigated the effect of small interfering RNA (siRNA)-loaded lipid-polymer hybrid nanoparticles (LPNs), which are designed for treatment of lung inflammation, on the physiological function of PS. By using biophysical in vitro methods we show that siRNA-loaded LPNs affect the biophysical function and lateral structure of PS.
View Article and Find Full Text PDFRNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases.
View Article and Find Full Text PDFDefects in the genome cause genetic diseases and can be treated with gene therapy. Due to the limitations encountered in gene delivery, lipid-based supramolecular colloidal materials have emerged as promising gene carrier systems. In their non-functionalized form, lipid nanoparticles often demonstrate lower transgene expression efficiency, leading to suboptimal therapeutic outcomes, specifically through reduced percentages of cells expressing the transgene.
View Article and Find Full Text PDFDesign of inhalable mRNA therapeutics is promising because local administration in the respiratory tract is minimally invasive and induces a local response. However, several challenges related to administration via inhalation and respiratory tract barriers have so far prevented the progress of inhaled mRNA therapeutics. Here, we investigated factors of importance for lipid nanoparticle (LNP)-mediated delivery of mRNA to the respiratory tract.
View Article and Find Full Text PDFObjectives: Non-invasive imaging with line-field confocal optical coherence tomography (LC-OCT) can support the diagnosis of squamous cell carcinoma (SCC) through visualization of morphological characteristics specific to skin cancer. We aimed to visualize prominent morphological characteristics of SCC using LC-OCT in a well-established murine SCC model.
Materials And Methods: Nine hairless mice were exposed to ultraviolet radiation three times weekly for 9 months to induce SCC development.
Most licensed human vaccines are based on liquid dosage forms but have poor storage stability and require continuous and expensive cold-chain storage. In contrast, the use of solid vaccine dosage forms produced by for example spray drying, extends shelf life and eliminates the need for a cold chain. Zinc oxide (ZnO)-based nanoparticles display immunomodulatory properties, but their adjuvant effect as a dry powder formulation is unknown.
View Article and Find Full Text PDFMalaria infected erythrocytes utilize the parasite protein VAR2CSA to bind to a unique presentation of chondroitin sulfate (CS) for their placenta specific tropism. Interestingly, many cancers express a similar form of CS, thereby termed oncofetal CS (ofCS). The distinctive tropism of malaria infected erythrocytes and the identification of oncofetal CS, therefore, represent potentially potent tools for cancer targeting.
View Article and Find Full Text PDFPrime editing is an advanced gene editing platform with potential to correct almost any disease-causing mutation. As genome editors have evolved, their size and complexity have increased, hindering delivery technologies with low-carrying capacity and endosomal escape. We formulated an array of lipid nanoparticles (LNPs) containing prime editors (PEs).
View Article and Find Full Text PDFTo develop a combinatorial artificial-neural-network design-of-experiment (ANN-DOE) model, the effect of ionizable lipid, an ionizable lipid-to-cholesterol ratio, N/P ratio, flow rate ratio (FRR), and total flow rate (TFR) on the outcome responses of mRNA-LNP vaccine were evaluated using a definitive screening design (DSD) and machine learning (ML) algorithms. Particle size (PS), PDI, zeta potential (ZP), and encapsulation efficiency (EE) of mRNA-LNP were optimized within a defined constraint (PS 40-100 nm, PDI ≤ 0.30, ZP≥(±)0.
View Article and Find Full Text PDFThe ability to induce antigen-specific CD4 and CD8T-cell responses is one of the fundamental requirements when developing new efficacious vaccines against challenging infectious diseases and cancer. However, no adjuvants are currently approved for human subunit vaccines that induce T-cell immunity. Here, we incorporated a Toll-like receptor 4 agonist, i.
View Article and Find Full Text PDFMucosal surfaces of the lungs represent a major site of entry for airborne pathogens, and pulmonary administration of vaccines is an attractive strategy to induce protective mucosal immunity in the airways. Recently, we demonstrated the potential of pulmonary vaccination with the tuberculosis subunit antigen H56 adjuvanted with the cationic liposomal adjuvant formulation CAF01, which consists of the cationic lipid dimethyldioctadecylammonium (DDA) bromide and the synthetic cord factor trehalose-6,6'-dibehenate. However, the cationic charge of DDA represents a major safety challenge.
View Article and Find Full Text PDFWe analyzed the structural and material properties of small interfering RNA (siRNA)-loaded lipid-polymer hybrid nanoparticles (LPNs) containing ionizable lipidoid and poly(dl-lactic-co-glycolic acid) (PLGA) using small-angle X-ray scattering, cryogenic transmission electron microscopy, polarized light microscopy, the Langmuir monolayer methodology, differential scanning calorimetry, and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. Scattering analyses showed that bulk lipidoid self-assemble into lamellar structures with a d-spacing of 38 Å, whereas lipidoid-siRNA lipoplexes display an in-plane lateral organization of siRNA in between lipidoid bilayers with a repeat distance of approximately 55 Å. The siRNA-loaded LPNs adopted a core-shell structure with an interaxial alignment of siRNA between lipidoid shell bilayers.
View Article and Find Full Text PDFPulmonary delivery of small interfering RNA (siRNA) using nanoparticle-based delivery systems is promising for local treatment of respiratory diseases. We designed dry powder inhaler formulations of siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) with aerosolization properties optimized for inhalation therapy. Interactions between LPNs and pulmonary surfactant (PS) determine the fate of inhaled LPNs, but interaction mechanisms are unknown.
View Article and Find Full Text PDFRobust, sensitive, and versatile analytical methods are essential for quantification of RNA drug cargos loaded into nanoparticle-based delivery systems. However, simultaneous quantification of multiple RNA cargos co-loaded into nanoparticles remains a challenge. Here, we developed and validated the use of ion-pair reversed-phase high-performance liquid chromatography combined with UV detection (IP-RP-HPLC-UV) for simultaneous quantification of single- and double-stranded RNA cargos.
View Article and Find Full Text PDFThermostable dry powder inhaler (DPI) formulations with high aerosol performance are attractive inhalable solid dosage forms for local treatment of inflammatory lung diseases. We recently demonstrated that lipidoid-polymer hybrid nanoparticles (LPNs) loaded with small interfering RNA (siRNA) directed against tumor necrosis factor alpha (TNF-α) mediate efficient intracellular siRNA delivery and reduce inflammation in vivo. Here, we show that mixtures of the stabilizing excipients trehalose (Tre) and dextran (Dex), in combination with the shell-forming dispersion enhancer leucine (Leu), stabilize TNF-α siRNA-loaded LPNs during spray drying into nanocomposite microparticles, and result in DPI formulations with high aerosol performance.
View Article and Find Full Text PDFThe degree of antigen adsorption to adjuvants in subunit vaccines may significantly influence the immune responses they induce upon vaccination. Commonly used approaches for studying how the level of adsorption affects the induction of antigen-specific immune responses include (i) using adjuvants with different abilities to adsorb antigens, and (ii) comparing different antigens selected based on their ability to adsorb to the adjuvant. A weakness of these approaches is that not only the antigen adsorption level is varied, but also other important functional factors such as adjuvant composition and/or the B/T cell epitopes, which may affect immunogenicity.
View Article and Find Full Text PDFTherapy based on RNA interference (RNAi), which can be mediated by exogenous small interfering RNA (siRNA), has potential for the management of diseases at the genetic level by silencing gene function(s). In all eukaryotic cells, RNAi is an endogenous regulatory mechanism, where messenger RNA (mRNA) is degraded, preventing its translation into protein. A significant advantage of RNAi therapy is that siRNA is very potent and gene silencing is highly specific, ensuring few off-target effects.
View Article and Find Full Text PDFNucleic acid-based therapeutics that regulate gene expression have been developed towards clinical use at a steady pace for several decades, but in recent years the field has been accelerating. To date, there are 11 marketed products based on antisense oligonucleotides, aptamers and small interfering RNAs, and many others are in the pipeline for both academia and industry. A major technology trigger for this development has been progress in oligonucleotide chemistry to improve the drug properties and reduce cost of goods, but the main hurdle for the application to a wider range of disorders is delivery to target tissues.
View Article and Find Full Text PDFObstructive airway diseases, e.g., chronic obstructive pulmonary disease (COPD) and asthma, represent leading causes of morbidity and mortality worldwide.
View Article and Find Full Text PDFRNA interference (RNAi) has an unprecedented potential as a therapeutic strategy for reversibly silencing the expression of any gene. Therapeutic delivery of the RNAi mediator, i.e.
View Article and Find Full Text PDFBackground And Objectives: Thermo-mechanical fractional injury (TMFI) impacts the skin barrier and may increase cutaneous drug uptake. This study investigated the potential of TMFI in combination with 5-aminolevulinic acid (ALA) cream and gel formulations to enhance Protoporphyrin IX (PpIX) fluorescence at the skin surface and in the skin.
Study Design/materials And Methods: In healthy volunteers (n = 12) a total of 144 test areas were demarcated on the upper back.
To improve the efficacy of nucleic acid-based therapeutics, e.g., small interfering RNA (siRNA), transfection agents are needed for efficient delivery into cells.
View Article and Find Full Text PDFThere is an urgent need for effective countermeasures against the current emergence and accelerating expansion of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Induction of herd immunity by mass vaccination has been a very successful strategy for preventing the spread of many infectious diseases, hence protecting the most vulnerable population groups unable to develop immunity, for example individuals with immunodeficiencies or a weakened immune system due to underlying medical or debilitating conditions. Therefore, vaccination represents one of the most promising counter-pandemic measures to COVID-19.
View Article and Find Full Text PDFUnderstanding the fate of vaccine antigens and adjuvants and their safety is crucial for the rational design of mucosal subunit vaccines. Prime and pull vaccination using the T helper 17-inducing adjuvant CAF01 administered parenterally and mucosally, respectively, has previously been suggested as a promising strategy to redirect immunity to mucosal tissues. Recently, we reported a promising tuberculosis (TB) vaccination strategy comprising of parenteral priming followed by intrapulmonary (i.
View Article and Find Full Text PDF