In order to increase the radiation performance of aperture-type antennas, this paper demonstrates a low-profile, planar, single-layer, three-dimensional (3-D) printable metastructure. The proposed hybridized metastructure is highly transparent as it is made out of novel hybrid meta-atoms having transmission coefficient magnitudes greater than - 0.72 dB and fully complies with the near-field phase transformation principle.
View Article and Find Full Text PDFThe gain of some aperture antennas can be significantly increased by making the antenna near-field phase distribution more uniform, using a phase-transformation structure. A novel dielectric-free phase transforming structure (DF-PTS) is presented in this paper for this purpose, and its ability to correct the aperture phase distribution of a resonant cavity antenna (RCA) over a much wider bandwidth is demonstrated. As opposed to printed multilayered metasurfaces, all the cells in crucial locations of the DF-PTS have a phase response that tracks the phase error of the RCA over a large bandwidth, and in addition have wideband transmission characteristics, resulting in a wideband antenna system.
View Article and Find Full Text PDF