Publications by authors named "Foden A"

Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The Drosophila antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience.

View Article and Find Full Text PDF

Glial phagocytic activity refines connectivity, though molecular mechanisms regulating this exquisitely sensitive process are incompletely defined. We developed the Drosophila antennal lobe as a model for identifying molecular mechanisms underlying glial refinement of neural circuits in the absence of injury. Antennal lobe organization is stereotyped and characterized by individual glomeruli comprised of unique olfactory receptor neuronal (ORN) populations.

View Article and Find Full Text PDF

Lateral ventral neurons (LNvs) in the fly circadian neural circuit mediate behaviors other than clock resetting, including light-activated acute arousal. Converging sensory inputs often confer functional redundancy. The LNvs have three distinct light input pathways: (1) cell autonomously expressed cryptochrome (CRY), (2) rhodopsin 7 (Rh7), and (3) synaptic inputs from the eyes and other external photoreceptors that express opsins and CRY.

View Article and Find Full Text PDF

Nocturnal Anopheles mosquitoes exhibit strong behavioral avoidance to blue-light while diurnal Aedes mosquitoes are behaviorally attracted to blue-light and a wide range of other wavelengths of light. To determine the molecular mechanism of these effects, we expressed light-sensing Anopheles gambiae (AgCRY1) and Aedes aegypti (AeCRY1) Cryptochrome 1 (CRY) genes under a crypGAL4-24 driver line in a mutant Drosophila genetic background lacking native functional CRY, then tested behavioral and electrophysiological effects of mosquito CRY expression relative to positive and negative CRY control conditions. Neither mosquito CRY stops the circadian clock as shown by robust circadian behavioral rhythmicity in constant darkness in flies expressing either AgCRY1 or AeCRY1.

View Article and Find Full Text PDF

Cryptochrome (CRY) is a short-wavelength light-sensitive photoreceptor expressed in a subset of circadian neurons and eyes in Drosophila that regulates light-evoked circadian clock resetting. Acutely, light evokes rapid electrical excitation of the ventral lateral subset of circadian neurons and confers circadian-modulated avoidance behavioral responses to short-wavelength light. Recent work shows dramatically different avoidance versus attraction behavioral responses to short-wavelength light in day-active versus night-active mosquitoes and that these behavioral responses are attenuated by CRY protein degradation by constant light exposure in mosquitoes.

View Article and Find Full Text PDF

The routine and unique determination of minor phases in microstructures is critical to materials science. In metallurgy alone, applications include alloy and process development and the understanding of degradation in service. We develop a correlative method, exploring superalloy microstructures, which are examined in the scanning electron microscope (SEM) using simultaneous energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD).

View Article and Find Full Text PDF

CRYPTOCHROME (dCRY) mediates electrophysiological depolarization and circadian clock resetting in response to blue or ultraviolet (UV) light. These light-evoked biological responses operate at different timescales and possibly through different mechanisms. Whether electron transfer down a conserved chain of tryptophan residues underlies biological responses following dCRY light activation has been controversial.

View Article and Find Full Text PDF

Electron backscatter diffraction (EBSD) is a well-established method of characterisation for crystalline materials. Using this technique, we can rapidly acquire and index diffraction patterns to provide phase and orientation information about the crystals on the material surface. The conventional analysis method uses signal processing based on a Hough/Radon transform to index each diffraction pattern.

View Article and Find Full Text PDF

Background: Antibiotic-associated diarrhoea (AAD) occurs most commonly in older people admitted to hospital and within 12 weeks of exposure to broad-spectrum antibiotics. Although usually a mild and self-limiting illness, the 15-39% of cases caused by Clostridium difficile infection [C. difficile diarrhoea (CDD)] may result in severe diarrhoea and death.

View Article and Find Full Text PDF

Background: Antibiotic-associated diarrhoea (AAD) occurs most frequently in older (≥65 years) inpatients exposed to broad-spectrum antibiotics. When caused by Clostridium difficile, AAD can result in life-threatening illness. Although underlying disease mechanisms are not well understood, microbial preparations have been assessed in the prevention of AAD.

View Article and Find Full Text PDF

Background: Antibiotic associated diarrhoea complicates 5-39% of courses of antibiotic treatment. Major risk factors are increased age and admission to hospital. Of particular importance is C.

View Article and Find Full Text PDF

Organophosphate insecticides may cause serious poisoning either accidentally or by deliberate ingestion. Toxic symptoms are produced by acetylcholine accumulation at cholinergic receptors. Diagnosis is based on history of exposure or ingestion, symptoms and signs of cholinergic overactivity and a decrease in serum pseudocholinesterase levels.

View Article and Find Full Text PDF

Colposcopically directed punch biopsy specimens of the uterine cervix were taken from women in whom Papanicolaou smears indicated cytological abnormalities. Half of each specimen was processed for scanning electron microscopy and half for light microscopy. The surface morphology of normal cervical, metaplastic and frankly carcinomatous epithelia and epithelia of carcinoma in situ, as seen under the scanning electron microscope, was compared with the appearance revealed by Papanicolaou smears, and haematoxylin- and eosin-stained sections.

View Article and Find Full Text PDF