Publications by authors named "Fnu Tala"

The vagal nerve is linked to tumorigenesis in multiple tissues including small cell lung cancer (SCLC). However, the role of sympathetic neuron in SCLC development remains unknown. Here, we observed a significant reduction in tumor growth following chemical denervation of local sympathetic nerves in a mouse model of SCLC.

View Article and Find Full Text PDF

Peripheral nerve modulation via electrical stimulation shows promise for treating several diseases, but current approaches lack selectivity, leading to side effects. Exploring selective neuromodulation with commercially available nerve cuffs is impractical due to their high cost and limited spatial resolution. While custom cuffs reported in the literature achieve high spatial resolutions, they require specialized microfabrication equipment and significant effort to produce even a single design.

View Article and Find Full Text PDF

Deeply implanted bioelectronic devices that selectively record and stimulate peripheral nerves have the potential to revolutionize healthcare by delivering on-demand, personalized therapy. A key barrier to this goal is the lack of a miniaturized, robust, and energy-efficient wireless link capable of transmitting data from multiple sensing channels. To address this issue, we present a wireless galvanic impulse link that uses two 500μm diameter planar electrodes on the outside of a nerve cuff to transmit data to a wearable receiver on the skin's surface at rates greater than 1Mbps.

View Article and Find Full Text PDF

Selective neuromodulation of peripheral nerves is an emerging treatment for neurological diseases that are resistant to traditional drug therapy. While nerve cuffs with multichannel stimulation can be made by many varied methods, they usually require specialized microfabrication or additive manufacturing equipment. A truly low-cost and effective method of creating a custom cuff has not been accessible to researchers to prototype new methodologies and therapies in acute studies.

View Article and Find Full Text PDF

We present a small (43mm x 24mm x 15mm), off-the-shelf wireless neurostimulator for rodent deep brain stimulation research. Our device enables researchers to wirelessly configure stimulator settings, such as amplitude, pulse width, channel selection, and frequency, via a phone app. The system uses impedance-independent current-mode stimulation and steers current to a selected channel.

View Article and Find Full Text PDF