Alterations in the gut microbiome have been associated with changes in bone mass and microstructure, but the effects of the microbiome on bone biomechanical properties are not known. Here we examined bone strength under two conditions of altered microbiota: (1) an inbred mouse strain known to develop an altered gut microbiome due to deficits in the immune system (the Toll-like receptor 5-deficient mouse [TLR5KO]); and (2) disruption of the gut microbiota (ΔMicrobiota) through chronic treatment with selected antibiotics (ampicillin and neomycin). The bone phenotypes of TLR5KO and WT (C57Bl/6) mice were examined after disruption of the microbiota from 4 weeks to 16 weeks of age as well as without treatment (n = 7 to 16/group, 39 animals total).
View Article and Find Full Text PDFDiffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma, with multiple molecular subtypes. The activated B-cell-like DLBCL subtype accounts for roughly one-third of all the cases and has an inferior prognosis. There is a need to develop better class of therapeutics that could target molecular pathways in resistant DLBCLs; however, this requires DLBCLs to be studied in representative tumor microenvironments.
View Article and Find Full Text PDF