Publications by authors named "Flurin D Eisner"

Higher adducts of a fullerene, such as the bis-adduct of PCBM (bis-PCBM), can be used to achieve shallower molecular orbital energy levels than, for example, PCBM or C Substituting the bis-adduct for the parent fullerene is useful to increase the open-circuit voltage of organic solar cells or achieve better energy alignment as electron transport layers in, for example, perovskite solar cells. However, bis-PCBM is usually synthesized as a mixture of structural isomers, which can lead to both energetic and morphological disorder, negatively affecting device performance. Here, we present a comprehensive study on the molecular properties of 19 pure bis-isomers of PCBM using a variety of characterization methods, including ultraviolet photoelectron spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, single crystal structure, and (time-dependent) density functional theory calculation.

View Article and Find Full Text PDF

Two new glycolated semiconducting polymers PgBT(F)2gT and PgBT(F)2gTT of differing backbone curvatures were designed and synthesised for application as p-type accumulation mode organic electrochemical transistor (OECT) materials. Both polymers demonstrated stable and reversible oxidation, accessible within the aqueous electrochemical window, to generate polaronic charge carriers. OECTs fabricated from PgBT(F)2gT featuring a curved backbone geometry attained a higher volumetric capacitance of 170 F cm .

View Article and Find Full Text PDF

Two fused ladder-type nonfullerene acceptors, DTCCIC and DTCCIC-4F, based on an electron-donating alkylated dithienocyclopentacarbazole core flanked by electron-withdrawing nonfluorinated or fluorinated 1,1-dicyanomethylene-3-indanone (IC or IC-4F), are prepared and utilized in organic solar cells (OSCs). The two new molecules reveal planar structures and strong aggregation behavior, and fluorination is shown to red-shift the optical band gap and downshift energy levels. OSCs based on DTCCIC-4F exhibit a power conversion efficiency of 12.

View Article and Find Full Text PDF

A number of recent studies have shown that the nonradiative voltage losses in organic solar cells can be suppressed in systems with low energetic offsets between donor and acceptor molecular states, but the physical reasons underpinning this remain unclear. Here, we present a systematic study of 18 different donor/acceptor blends to determine the effect that energetic offset has on both radiative and nonradiative recombination of the charge-transfer (CT) state. We find that, for certain blends, low offsets result in hybridization between charge-transfer and lowest donor or acceptor exciton states, which leads to a strong suppression in the nonradiative voltage loss to values as low as 0.

View Article and Find Full Text PDF
Article Synopsis
  • * A new type of solar cell using these fullerenes alone as light-absorbing materials shows promising results, achieving a power conversion efficiency (PCE) of around 1% initially, which increases to 5.4% when blended with a p-type semiconductor, copper (I) thiocyanate (CuSCN).
  • * The study highlights the formation of a unique p-n-like heterointerface between CuSCN and the fullerene derivatives as a critical factor for improving solar cell performance, suggesting possibilities for innovative solar technologies.
View Article and Find Full Text PDF

A new synthetic route, to prepare an alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor (C8-ITIC), is reported. Compared to the reported ITIC with phenylalkyl side chains, the new acceptor C8-ITIC exhibits a reduction in the optical band gap, higher absorptivity, and an increased propensity to crystallize. Accordingly, blends with the donor polymer PBDB-T exhibit a power conversion efficiency (PCE) up to 12.

View Article and Find Full Text PDF