Publications by authors named "Fluke C"

Studies of rodent models of Alzheimer's disease (AD) and of human tissues suggest that the retinal changes that occur in AD, including the accumulation of amyloid beta (Aβ), may serve as surrogate markers of brain Aβ levels. As Aβ has a wavelength-dependent effect on light scatter, we investigate the potential for in vivo retinal hyperspectral imaging to serve as a biomarker of brain Aβ. Significant differences in the retinal reflectance spectra are found between individuals with high Aβ burden on brain PET imaging and mild cognitive impairment (n = 15), and age-matched PET-negative controls (n = 20).

View Article and Find Full Text PDF

The surface nanotopography and architecture of medical implant devices are important factors that can control the extent of bacterial attachment. The ability to prevent bacterial attachment substantially reduces the possibility of a patient receiving an implant contracting an implant-borne infection. We now demonstrated that two bacterial strains, Staphylococcus aureus and Pseudomonas aeruginosa, exhibited different attachment affinities towards two types of molecularly smooth titanium surfaces each possessing a different nanoarchitecture.

View Article and Find Full Text PDF

There has been a growing interest in understanding the ways in which bacteria interact with nano-structured surfaces. As a result, there is a need for innovative approaches to enable researchers to visualize the biological processes taking place, despite the fact that it is not possible to directly observe these processes. We present a novel approach for the three-dimensional visualization of bacterial interactions with nano-structured surfaces using the software package Autodesk Maya.

View Article and Find Full Text PDF

The design of biomaterial surfaces relies heavily on the ability to accurately measure and visualize the three-dimensional surface nanoarchitecture of substrata. Here, we present a technique for producing three-dimensional surface models using displacement maps that are based on the data obtained from two-dimensional analyses. This technique is particularly useful when applied to scanning electron micrographs that have been calibrated using atomic force microscopy (AFM) roughness data.

View Article and Find Full Text PDF

With the latest release of the S2PLOT graphics library, embedding interactive, 3-dimensional (3-d) scientific figures in Adobe Portable Document Format (PDF) files is simple, and can be accomplished without commercial software. In this paper, we motivate the need for embedding 3-d figures in scholarly articles. We explain how 3-d figures can be created using the S2PLOT graphics library, exported to Product Representation Compact (PRC) format, and included as fully interactive, 3-d figures in PDF files using the movie15 LaTeX package.

View Article and Find Full Text PDF

The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface.

View Article and Find Full Text PDF

Despite the volume of work that has been conducted on the topic, the role of surface topography in mediating bacterial cell adhesion is not well understood. The primary reason for this lack of understanding is the relatively limited extent of topographical characterisation employed in many studies. In the present study, the topographies of three sub-nanometrically smooth titanium (Ti) surfaces were comprehensively characterised, using nine individual parameters that together describe the height, shape and distribution of their surface features.

View Article and Find Full Text PDF

Magnetron sputtering techniques were used to prepare molecularly smooth titanium thin films possessing an average roughness between 0.18 nm and 0.52 nm over 5 μm × 5 μm AFM scanning areas.

View Article and Find Full Text PDF

The nanoarchitecture and surface roughness of metallic thin films prepared by magnetron sputtering were analyzed to determine the topographical statistics that give the optimum description of their nanoarchitechture. Nanoscale topographical profiles were generated by performing atomic force microscopy (AFM) scans of 1 μm × 1 μm areas of titanium and silver films of three different thicknesses (3 nm, 12 nm, and 150 nm). Of the titanium films, the 150-nm film had the highest average roughness (R(a) = 2.

View Article and Find Full Text PDF

The physicochemical and bactericidal properties of thin silver films have been analysed. Silver films of 3 and 150 nm thicknesses were fabricated using a magnetron sputtering thin-film deposition system. X-ray photoelectron and energy dispersive X-ray spectroscopy and atomic force microscopy analyses confirmed that the resulting surfaces were homogeneous, and that silver was the most abundant element present on both surfaces, being 45 and 53 at.

View Article and Find Full Text PDF

Optical fibres have received considerable attention as high-density sensor arrays suitable for both in vitro and in vivo measurements of biomolecules and biological processes in living organisms and/or nano-environments. The fibre surface was chemically modified by exposure to a selective etchant that preferentially erodes the fibre cores relative to the surrounding cladding material, thus producing a regular pattern of cylindrical wells of approximately 2.5 mum in diameter and 2.

View Article and Find Full Text PDF

We discuss the effect of extreme grain refinement in the bulk of commercial purity titanium (CP, Grade-2) on bacterial attachment to the mechano-chemically polished surfaces of the material. The ultrafine crystallinity of the bulk was achieved by severe plastic deformation by means of equal channel angular pressing (ECAP). The chemical composition, wettability, surface topography and roughness of titanium surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) measurements, as well as atomic force microscopy (AFM) with 3D interactive visualization of the titanium surface morphology.

View Article and Find Full Text PDF

Two human pathogenic bacteria, Staphylococcus aureus CIP 68.5 and Pseudomonas aeruginosa ATCC 9025, were adsorbed onto surfaces containing Ti thin films of varying thickness to determine the extent to which nanoscale surface roughness influences the extent of bacterial attachment. A magnetron sputter thin film system was used to deposit titanium films with thicknesses of 3, 12, and 150 nm on glass substrata with corresponding surface roughness parameters of R(q) 1.

View Article and Find Full Text PDF

The influence of the ultrafine crystallinity of commercial purity grade 2 (as-received) titanium and titanium modified by equal channel angular pressing (modified titanium) on bacterial attachment was studied. A topographic profile analysis of the surface of the modified titanium revealed a complex morphology of the surface. Its prominent micro- and nano-scale features were 100-200-nm-scale undulations with 10-15 microm spacing.

View Article and Find Full Text PDF
Understanding how to label biohazards.

J Healthc Mater Manage

April 1993

Every employee needs to be warned of the potential danger in handling biohazards. Without labels and color-coded bags and containers, our early warning system is defeated. We can significantly reduce the dangers to employees by using this warning system.

View Article and Find Full Text PDF
Sharps safety.

J Healthc Mater Manage

October 1992

All employees need to be very careful handling sharps to minimize risks to themselves and coworkers. The attention, awareness and attitude that lend themselves to safe practice can only be developed through thorough training and following correct procedures. If you have an accident/injury, report it immediately and follow your hospital's Exposure Control Plan.

View Article and Find Full Text PDF