Unlabelled: Cellular responses to external stress allow microorganisms to adapt to a vast array of environmental conditions, including infection sites. The molecular mechanisms behind these responses are studied to gain insight into microbial pathogenesis, which could lead to new antimicrobial therapies. Here, we explore a role for arrestin protein-mediated ubiquitination in stress response and pathogenesis in the pathogenic fungus .
View Article and Find Full Text PDFUnlabelled: Cryptococcosis, caused by fungi of the genus , manifests in a broad range of clinical presentations, including severe pneumonia and disease of the central nervous system (CNS) and other tissues (bone and skin). Immune deficiency or development of overexuberant inflammatory responses can result in increased susceptibility or host damage, respectively, during fungal encounters. Leukotrienes help regulate inflammatory responses against fungal infections.
View Article and Find Full Text PDFCryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an encapsulated fungal pathogen found ubiquitously in the environment that causes pneumonia and life-threatening infections of the central nervous system. Following inhalation of yeasts or desiccated basidiospores into the lung alveoli, resident pulmonary phagocytic cells aid in the identification and eradication of Cryptococcus yeast through their arsenal of pattern recognition receptors (PRRs). PRRs recognize conserved pathogen-associated molecular patterns (PAMPs), such as branched mannans, β-glucans, and chitins that are the major components of the fungal cell wall.
View Article and Find Full Text PDFCryptococcus neoformans and Cryptococcus gattii are the predominant etiological agents of cryptococcosis, a particularly problematic disease in immunocompromised individuals. The increased clinical use of immunosuppressive drugs, the inherent ability of Cryptococcus species to suppress and evade host immune responses, and the emergence of drug-resistant yeast support the need for model systems that facilitate the design of novel immunotherapies and antifungals to combat disease progression. The mouse model of cryptococcosis is a widely used system to study Cryptococcus pathogenesis and the efficacy of antifungal drugs in vivo.
View Article and Find Full Text PDFCandidiasis is one of the most frequent nosocomial infections affecting an increasing number of at-risk patients. remains the most frequent causative agent of candidiasis, but, in the last decade, has emerged as a formidable multi-drug-resistant pathogen. Both species are fully capable of forming biofilms, which contribute to resistance, increasing the urgency for new effective antifungal therapies.
View Article and Find Full Text PDFCandida spp. are opportunistic yeasts capable of forming biofilms, which contribute to resistance, increasing the urgency for new effective antifungal therapies. Repurposing existing drugs could significantly accelerate the development of novel therapies against candidiasis.
View Article and Find Full Text PDFVaccines are one of the most effective public health tools to prevent and manage infectious diseases. Since the first clinical use of vaccines in the late 18th century, many vaccines have been successfully developed to combat bacterial and viral infections, including the most recent Coronavirus Disease 2019 (COVID-19) pandemic. However, there remains no vaccine that is clinically available to treat or prevent invasive fungal diseases, including cryptococcal meningoencephalitis.
View Article and Find Full Text PDFMany successful pathogens cause latent infections, remaining dormant within the host for years but retaining the ability to reactivate to cause symptomatic disease. The human opportunistic fungal pathogen Cryptococcus neoformans establishes latent pulmonary infections in immunocompetent individuals upon inhalation from the environment. These latent infections are frequently characterized by granulomas, or foci of chronic inflammation, that contain dormant and persistent cryptococcal cells.
View Article and Find Full Text PDFRecruitment of polymorphonuclear neutrophils (PMNs) into the vaginal lumen is the hallmark of an acute immunopathologic inflammatory response during vulvovaginal candidiasis (VVC) caused by Recurrent VVC (RVVC) remains a chronic health burden in affected women worldwide despite the use of antifungal therapy. Based on the role leukotrienes (LTs) play in promoting inflammation, leukotriene receptor antagonists (LTRAs) targeted for LTB (etalocib) or LTC, LTD and LTE (zafirlukast or montelukast) have been shown to reduce inflammation of epithelial tissues. An open-label pilot study using long-term regimens of zafirlukast in women with RVVC indicated the potential for some relief from recurrent episodes.
View Article and Find Full Text PDFThe way that diversity, equity, and inclusion impact scientific careers varies for everyone, but it is evident that institutions providing an environment where being different or having differences creates a sense of being welcomed, supported, and valued are beneficial to the scientific community at large. In this commentary, three short stories from Texas-based microbiologists are used to depict (i) the importance of bringing the guiding principles of diversity, equity, and inclusion within their professional roles, (ii) the need to apply and translate those principles to support and enable successful scientific careers among peers and trainees, and (iii) the impact of effective science communication to increase the understanding of microbial environments among the community at large.
View Article and Find Full Text PDFOcular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice.
View Article and Find Full Text PDFPLoS Pathog
April 2021
The Peptidoglycan (PG) cell wall of the Lyme disease (LD) spirochete, Borrelia burgdorferi (Bb), contributes to structural and morphological integrity of Bb; is a persistent antigen in LD patients; and has a unique pentapeptide with L-Ornithine as the third amino acid that cross-links its glycan polymers. A borrelial homolog (BB_0167) interacted specifically with borrelilal PG via its peptidoglycan interacting motif (MHELSEKRARAIGNYL); was localized to the protoplasmic cylinder of Bb; and was designated as Borrelia peptidoglycan interacting Protein (BpiP). A bpiP mutant displayed no defect under in vitro growth conditions with similar levels of several virulence-related proteins.
View Article and Find Full Text PDFCaspase recruitment domain-containing protein 9 (CARD9) is a critical adaptor molecule triggered by the interaction of C-type lectin receptors (CLRs) with carbohydrate motifs found in fungi. Consequently, clinical and animal studies indicate that CARD9 is an important regulator of protective immunity against fungal pathogens. Previous studies suggest that CARD9 is important for the induction of protection against , an opportunistic fungal pathogen that causes life-threatening infections of the central nervous system in immunocompromised patients.
View Article and Find Full Text PDFArrestins, a structurally specialized and functionally diverse group of proteins, are central regulators of adaptive cellular responses in eukaryotes. Previous studies on fungal arrestins have demonstrated their capacity to modulate diverse cellular processes through their adaptor functions, facilitating the localization and function of other proteins. However, the mechanisms by which arrestin-regulated processes are involved in fungal virulence remain unexplored.
View Article and Find Full Text PDFBackground: Cryptococcus neoformans, the causative agent of cryptococcosis, causes ~ 181,000 deaths annually, with males having a higher incidence of disease than females (7M:3F). The reason for this sex bias remains unclear. We hypothesized that this disparity was due to biological differences between the male and female immune response.
View Article and Find Full Text PDFDendritic cells (DCs), a vital component of the innate immune system, are considered to lack antigen specificity and be devoid of immunological memory. Strategies that can induce memory-like responses from innate cells can be utilized to elicit protective immunity in immune deficient persons. Here we utilize an experimental immunization strategy to modulate DC inflammatory and memory-like responses against an opportunistic fungal pathogen that causes significant disease in immunocompromised individuals.
View Article and Find Full Text PDFDevelopment of vaccines against opportunistic infections is difficult as patients most at risk of developing disease are deficient in aspects of the adaptive immune system. Here, we utilized an experimental immunization strategy to induce innate memory in macrophages in vivo. Unlike current trained immunity models, we present an innate memory-like phenotype in macrophages that is maintained for at least 70 days post-immunization and results in complete protection against secondary challenge in the absence of adaptive immune cells.
View Article and Find Full Text PDFSince its original isolation in 2009, has spread across the globe as a causative agent of invasive candidiasis. is typically intrinsically resistant to fluconazole and can also be resistant to echinocandins and even amphotericin B. Thus, there is an urgent need to find new treatment options against this emerging pathogen.
View Article and Find Full Text PDFThe human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion.
View Article and Find Full Text PDFspecies, the etiological agents of cryptococcosis, are encapsulated fungal yeasts that predominantly cause disease in immunocompromised individuals, and are responsible for 15% of AIDS-related deaths worldwide. Exposure follows the inhalation of the yeast into the lung alveoli, making it incumbent upon the pattern recognition receptors (PRRs) of pulmonary phagocytes to recognize highly conserved pathogen-associated molecular patterns (PAMPS) of fungi. The main challenges impeding the ability of pulmonary phagocytes to effectively recognize include the presence of the yeast's large polysaccharide capsule, as well as other cryptococcal virulence factors that mask fungal PAMPs and help evade detection and subsequent activation of the immune system.
View Article and Find Full Text PDFCryptococcosis is a fungal disease caused by multiple serotypes; particularly (serotypes A and D) and (serotypes B and C). To date, there is no clinically available vaccine to prevent cryptococcosis. Mice given an experimental pulmonary vaccination with a serotype A strain engineered to produce interferon-γ, denoted H99γ, are protected against a subsequent otherwise lethal experimental infection with serotype A.
View Article and Find Full Text PDFCryptococcosis remains a significant cause of morbidity and mortality world-wide, particularly among AIDS patients. Yet, to date, there are no licensed vaccines clinically available to treat or prevent cryptococcosis. In this review, we provide a rationale to support continued investment in Cryptococcus vaccine research, potential challenges that must be overcome along the way, and a literature review of the current progress underway towards developing a vaccine to prevent cryptococcosis.
View Article and Find Full Text PDFCryptococcus neoformans and Cryptococcus gattii, the predominant etiological agents of cryptococcosis, are fungal pathogens that cause disease ranging from a mild pneumonia to life-threatening infections of the central nervous system (CNS). C. neoformans is widely considered an opportunistic fungal pathogen which targets individuals with impaired immune systems, while C.
View Article and Find Full Text PDFUnlabelled: Compared to other fungal pathogens, Cryptococcus neoformans is particularly adept at avoiding detection by innate immune cells. To explore fungal cellular features involved in immune avoidance, we characterized cell surface changes of the C. neoformans rim101Δ mutant, a strain that fails to organize and shield immunogenic epitopes from host detection.
View Article and Find Full Text PDFC-type lectin receptors (CLRs) are diverse, trans-membrane proteins that function as pattern recognition receptors (PRRs) which are necessary for orchestrating immune responses against pathogens. CLRs have been shown to play a major role in recognition and protection against fungal pathogens. Dectin-3 (also known as MCL, Clecsf8, or Clec4d) is a myeloid cell-specific CLR that recognizes mycobacterial trehalose 6,6'-dimycolate (TDM) as well as α-mannans present in the cell wall of fungal pathogens.
View Article and Find Full Text PDF