Algal blooms are increasing worldwide, driven by elevated nutrient inputs. However, it is still unknown how tropical benthic algae will respond to heatwaves, which are expected to be more frequent under global warming. In the present study, a multifactorial experiment was carried out to investigate the potential synergistic effects of increased ammonium inputs (25 μM, control at 2.
View Article and Find Full Text PDFThis study aimed at identifying the presence of harmful cyanobacteria, detecting potential harmful algae toxins and their distribution in three seasons: December to February (hot dry season), March to May (rainy season), and June to November (cool dry season) of 2016. The samples were collected in five study sites in Tanzania: Tumbe, Chwaka, Paje, Bweleo in Zanzibar islands and Songosongo Island, mainland Tanzania, where skin irritation problems were observed in seaweed workers in an earlier study. The cyanobacteria from the Moorea genus were microscopically detected in the seawater, with highest concentrations in the months with the highest seawater temperature or hot dry season, than in the other two seasons.
View Article and Find Full Text PDFThe rapid expansion and globalization of the seaweed production industry, combined with rising seawater temperatures and coastal eutrophication, has led to an increase in infectious diseases and pest outbreaks. Here, we propose a novel Progressive Management Pathway for improving Seaweed Biosecurity.
View Article and Find Full Text PDFThis study focused on identifying the rotenoids from the Tephrosia vogelli plant (fish-poison-bean), investigating the toxic potency of a crude T. vogelii extract and individual rotenoids (tephrosin, deguelin and rotenone) in vitro and in vivo and assessing the mode of action. A trout (Onychorynhis mykiss) gill epithelial cell line (RTgill-W1) was used to determine the cytotoxicity of rotenoids and effects on cell metabolism.
View Article and Find Full Text PDF