Publications by authors named "Floros J"

The severity of respiratory syncytial virus (RSV) may be linked to host genetic susceptibility. Surfactant protein (SP) genetic variants have been associated with RSV severity, but the impact of single-nucleotide polymorphism (SNP)-SNP interactions remains unexplored. Therefore, we used a novel statistical model to investigate the association of SNP-SNP interactions of genes with RSV severity in two- and three-interaction models.

View Article and Find Full Text PDF

Background: Interactions among single nucleotide polymorphisms (SNPs) of surfactant protein (SP) are associated with acute respiratory failure (ARF) and its short-term outcome, pulmonary dysfunction at discharge (PDAD) in children. However, genetic association studies using individual SNPs have not been conducted before. We hypothesize that SP genetic variants are associated with pediatric ARF and its short-term complications by themselves.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection-related hospitalization in the first year of life. Surfactant dysfunction is central to pathophysiologic mechanisms of various pulmonary diseases including RSV. We hypothesized that RSV severity is associated with single nucleotide polymorphisms (SNPs) of surfactant proteins (SPs).

View Article and Find Full Text PDF

Human surfactant protein (SP)-A1 and SP-A2 exhibit differential qualitative and quantitative effects on the alveolar macrophage (AM), including a differential impact on the AM miRNome. Moreover, SP-A rescue (treatment) of SP-A-knockout (KO) infected mice impoves survival. Here, we studied for the first time the role of exogenous SP-A protein treatment on the regulation of lung alveolar cell (LAC) miRNome, the miRNA-RNA targets, and gene expression of SP-A-KO infected mice of both sexes.

View Article and Find Full Text PDF

Surfactant proteins (SPs) are important for normal lung function and innate immunity of the lungs and their genes have been identified with significant genetic variability. Changes in quantity or quality of SPs due to genetic mutations or natural genetic variability may alter their functions and contribute to the host susceptibility for particular diseases. Alternatively, SP single nucleotide polymorphisms (SNPs) can serve as markers to identify disease risk or response to therapies, as shown for other genes in a number of other studies.

View Article and Find Full Text PDF

Background: Surfactant protein-A (SP-A) plays a critical role in lung innate immunity by regulating alveolar macrophages (AM), expression of inflammatory mediators, and other host defense proteins. The toponome imaging system (TIS), a serial immunostainer, was used to study the AM toponome because it characterizes the localization of multiple markers and identifies marker combinations in each pixel as combinatorial molecular phenotypes (CMPs). We used TIS to study the AM toponome from wild type (WT) and SP-A knockout (KO) mice and changes following exposure.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how certain genetic variations (SNPs) in surfactant protein genes relate to long-term respiratory problems in children after experiencing acute respiratory failure (ARF).
  • Of the 250 children enrolled, 155 and 127 were assessed for respiratory morbidity at 6 and 12 months post-ARF, respectively, using complex statistical models.
  • Results indicated that specific SNPs, like rs1124_A and rs4715_A, were linked to an increased risk of respiratory issues at both time points, while others showed varying risks depending on the combination of SNPs in the analysis.
View Article and Find Full Text PDF

Using the Toponome Imaging System (TIS), a serial immunostainer, we studied the patterns of expression of multiple markers in alveolar macrophages (AM) from female mice lacking surfactant protein A (SP-A knockouts; KO) after "rescue" with exogenous SP-A1. We also used a 7-marker subset to compare with AM from males. AM were harvested 18 h after intrapharyngeal SP-A1 or vehicle, attached to slides, and subjected to serial immunostaining for 12 markers.

View Article and Find Full Text PDF

Objective: Many women are affected by vulvodynia, but medical therapies to date have proven ineffective. We performed a pilot study using gel-based proteomics to develop a map of proteins present in vaginal/vestibular secretions and identify proteins that could be considered for future evaluation as potential therapeutic targets.

Materials And Methods: We collected vestibular fluid from 4 controls and 4 patients with vulvodynia by placing a cotton swab in the vestibule and extracting the absorbed proteins.

View Article and Find Full Text PDF

Pulmonary surfactant proteins have many roles in surfactant- related functions and innate immunity. One of these proteins is the surfactant protein A (SP-A) that plays a role in both surfactant-related processes and host defense and is the focus in this review. SP-A interacts with the sentinel host defense cell in the alveolus, the alveolar macrophage (AM), to modulate its function and expression profile under various conditions, as well as other alveolar epithelial cells such as the Type II cell.

View Article and Find Full Text PDF

The human and genes encode the surfactant protein A1 (SP-A1) and SP-A2, respectively, and they have been identified with significant genetic and epigenetic variability including sequence, deletion/insertions, and splice variants. The surfactant proteins, SP-A1 and SP-A2, and their corresponding variants play important roles in several processes of innate immunity as well in surfactant-related functions as reviewed elsewhere [1]. The levels of SP-A have been shown to differ among individuals both under baseline conditions and in response to various agents or disease states.

View Article and Find Full Text PDF

Neonatal respiratory distress syndrome (RDS), due to surfactant deficiency in preterm infants, is the most common cause of respiratory morbidity. The surfactant proteins () genetic variants have been well-studied in association with RDS; however, the impact of SNP-SNP (single nucleotide polymorphism) interactions on RDS has not been addressed. Therefore, this study utilizes a newer statistical model to determine the association of single SNP model and SNP-SNP interactions in a two and a three SNP interaction model with RDS susceptibility.

View Article and Find Full Text PDF

The human innate host defense molecules, SP-A1 and SP-A2 variants, differentially affect survival after infection in mice and in lung transplant patients. SP-A interacts with the sentinel innate immune cell in the alveolus, the alveolar macrophage (AM), and modulates its function and regulation. SP-A also plays a role in pulmonary surfactant-related aspects, including surfactant structure and reorganization.

View Article and Find Full Text PDF

Employing the optical redox imaging technique, we previously identified a significant redox shift of nicotinamide adenine dinucleotide (NAD and the reduced form NADH) in freshly isolated alveolar macrophages (AM) from ozone-exposed mice. The goal here was twofold: (a) to determine the NAD(H) redox shift in cryopreserved AM isolated from ozone-exposed mice and (b) to investigate whether there is a difference in the redox status between cryopreserved and freshly isolated AM. We found: (i) AM from ozone-exposed mice were in a more oxidized redox state compared to that from filtered air (FA)-exposed mice, consistent with the results obtained from freshly isolated mouse AM; (ii) under FA exposure, there was no significant NAD(H) redox difference between fresh AM that had been placed on ice for 2.

View Article and Find Full Text PDF

In this opinion article, we discuss a serendipitous observation we made in a study investigating survival in aged mice after bacterial infection. This observation involved a non-invasive ventilation approach that led to variable and higher survival in male and female mice with different genetic backgrounds for the innate immune molecule, surfactant protein A (SP-A). We suggest that employing the best ventilatory modality, whether that be HFNC or another method, may augment the role of other factors such as SP-A genetics and sex in a personalized approach, and may ultimately improve the outcome.

View Article and Find Full Text PDF

Hypersensitivity pneumonitis (HP) is an interstitial lung disease caused by inhalation of common environmental organic particles. Surfactant proteins (SPs) play a role in innate immunity and surfactant function. We hypothesized that single nucleotide polymorphisms (SNPs) or haplotypes of the SP genes associate with HP.

View Article and Find Full Text PDF

Background: Human SP-A1 and SP-A2, encoded by and , and their genetic variants differentially impact alveolar macrophage (AM) functions and regulation, including the miRNome. We investigated whether miRNome differences previously observed between AM from SP-A2 and SP-A1/SP-A2 mice are due to continued qualitative differences or a delayed response of mice carrying a single gene.

Methods: Human transgenic (hTG) mice, carrying SP-A2 or both SP-A genes, and SP-A-KO mice were exposed to filtered air (FA) or ozone (O) AM miRNA levels, target gene expression, and pathways determined 18 h after O exposure.

View Article and Find Full Text PDF

Alveolar macrophages (AMs) are differentially regulated by human surfactant protein-A1 (SP-A1) or SP-A2. However, AMs are very heterogeneous and differences are difficult to characterize in intact cells. Using the Toponome Imaging System (TIS), an imaging technique that uses sequential immunostaining to identify patterns of biomarker expression or combinatorial molecular phenotypes (CMPs), we studied individual single cells and identified subgroups of AMs (n = 168) from SP-A-KO mice and mice expressing either SP-A1 or SP-A2.

View Article and Find Full Text PDF

Co-enzyme nicotinamide adenine dinucleotide (NAD(H)) redox plays a key role in macrophage function. Surfactant protein (SP-) A modulates the functions of alveolar macrophages (AM) and ozone (O) exposure in the presence or absence of SP-A and reduces mouse survival in a sex-dependent manner. It is unclear whether and how NAD(H) redox status plays a role in the innate immune response in a sex-dependent manner.

View Article and Find Full Text PDF

Surfactant protein A (SP-A) plays an important role in innate immunity. The sex-dependent survival of infected SP-A knockout (KO) mice has been observed. Our goal was to study the impact of ozone (O) and sex, as well as gonadal hormones, on the bronchoalveolar lavage (BAL) readouts and survival, respectively, of infected SP-A KO mice.

View Article and Find Full Text PDF

The pandemic of COVID-19 is of great concern to the scientific community. This mainly affects the elderly and people with underlying diseases. People with obesity are more likely to experience unpleasant disease symptoms and increased mortality.

View Article and Find Full Text PDF

Innate immune molecules, SP-A1 (6A, 6A) and SP-A2 (1A, 1A), differentially affect young mouse survival after infection. Here, we investigated the impact of SP-A variants on the survival of aged mice. hTG mice carried a different SP-A1 or SP-A2 variant and SP-A-KO were either infected with or exposed to filtered air (FA) or ozone (O) prior to infection, and their survival monitored over 14 days.

View Article and Find Full Text PDF

Surfactant protein A (SP-A) in addition to its surfactant-related functions interacts with alveolar macrophages (AM), the guardian cells of innate immunity in the lungs, and regulates many of its functions under basal condition and in response to various pressures, such as infection and oxidative stress. The human SP-A locus consists of two functional genes, and , and one pseudogene. The functional genes encode human SP-A1 and SP-A2 proteins, respectively, and each has been identified with several genetic variants.

View Article and Find Full Text PDF

The hallmarks of pediatric acute respiratory failure (ARF) are dysregulated inflammation and surfactant dysfunction. The objective is to study association of surfactant protein (SP) genes' single nucleotide polymorphisms (SNPs) with ARF and its morbidity: pulmonary dysfunction at discharge (PDAD), employing a single-, two-, and three-SNP interaction model. We enrolled 468 newborn controls and 248 children aged ≤ 24 months with ARF; 86 developed PDAD.

View Article and Find Full Text PDF