Redirecting T cells to tumor cells by bispecific antibodies is an effective approach to treat cancer, and T cell-dependent bispecific antibodies (TDBAs) are an emerging class of potent immunotherapeutic agents. By simultaneously targeting antigens on tumor cells and T cells, T cells are activated to kill tumor cells. Herein, we report a platform to generate a novel class of 2:1 structure of T cell-dependent bispecific antibody with bivalency for HER2 receptors on tumor cells and monovalency for CD3 receptors on T cells.
View Article and Find Full Text PDFBispecific antibodies as T cell engagers designed to display binding capabilities to both tumor-associated antigens and antigens on T cells are considered promising agents in the fight against cancer. Even though chemical strategies to develop such constructs have emerged, a method that readily converts a therapeutically applied antibody into a bispecific construct by a fully non-genetic process is not yet available. Herein, we report the application of a biogenic, tyrosine-based click reaction utilizing chemoenzymatic modifications of native IgG1 antibodies to generate a synthetic bispecific antibody construct that exhibits tumor-killing capability at picomolar concentrations.
View Article and Find Full Text PDFReaction rates of strained cycloalkynes and cycloalkenes with 1,2-quinone were quantified by stopped flow UV-Vis spectroscopy and computational analysis. We found that the strained alkyne BCN-OH 3 (k 1824 M s ) reacts >150 times faster than the strained alkene TCO-OH 5 (k 11.56 M s ), and that derivatization with a carbamate can lead to a reduction of the rate constant with almost half.
View Article and Find Full Text PDFGlycoConnect technology can be readily adapted to provide different drug-to-antibody ratios (DARs) and is currently also evaluated in various clinical programs, including ADCT-601 (DAR2), MRG004a (DAR4), and XMT-1660 (DAR6). While antibody-drug conjugates (ADCs) typically feature a DAR2-8, it has become clear that ADCs with ultrapotent payloads (e.g.
View Article and Find Full Text PDFMAbs
June 2022
Antibody-drug conjugates (ADCs) are increasingly powerful medicines for targeted cancer therapy. Inspired by the trend to further improve their therapeutic index by generation of homogenous ADCs, we report here how the clinical-stage GlycoConnect™ technology uses the globally conserved -glycosylation site to generate stable and site-specific ADCs based on enzymatic remodeling and metal-free click chemistry. We demonstrate how an engineered endoglycosidase and a native glycosyl transferase enable highly efficient, one-pot glycan remodeling, incorporating a novel sugar substrate 6-azidoGalNAc.
View Article and Find Full Text PDFAfter several notable clinical failures in early generations, antibody-drug conjugates (ADC) have made significant gains with seven new FDA approvals within the last 3 years. These successes have been driven by a shift towards mechanistically informed ADC design, where the payload, linker, drug-to-antibody ratio, and conjugation are increasingly tailored to a specific target and clinical indication. However, fundamental aspects needed for design, such as payload distribution, remain incompletely understood.
View Article and Find Full Text PDFThe availability of tools to generate homogeneous and stable antibody conjugates without recombinant DNA technology is a valuable asset in fields spanning from diagnostics to imaging and therapeutics. We present here a general approach for the conjugation to human IgG1 antibodies, by employing a straightforward two-stage protocol based on antibody deglycosylation followed by tyrosinase-mediated -quinone strain-promoted click chemistry. The technology is validated by the efficient and clean generation of highly potent DAR2 and DAR4 antibody-drug conjugates (ADCs) with cytotoxic payloads MMAE or PBD dimer, and their evaluation.
View Article and Find Full Text PDFAntibodies (Basel)
August 2018
The conflict of interest section of the published paper [1] has been updated as follows[...
View Article and Find Full Text PDFKnob-in-hole antibodies can be utilized to introduce a single tag for chemo-enzymatic functionalization. By either introducing a single C-terminal sortase tag (sortase-tag expressed protein ligation) or tyrosine tag (GY), mono-functionalization of the monoclonal antibody trastuzumab was achieved rapidly and in high yields. This method was applied to selectively and efficiently introduce a single fluorescent tag, cytokine or single-chain variable fragment, as well as produce clean homo dimers of trastuzumab.
View Article and Find Full Text PDFProteins can be labeled site-specifically and in inducible fashion by exposing a small peptide tag (GY) on any of its termini and activating the newly exposed tyrosine residue with the enzyme mushroom tyrosinase. The enzyme generates a quinone by oxidizing the tyrosine, which in turn can perform strain-promoted oxidation-controlled ortho-quinone cycloaddition (SPOCQ) with strained alkynes and alkenes, generating a stable conjugation product. Here, we describe a protocol to perform SPOCQ reaction on proteins, along with notes to optimize yield and reaction rates.
View Article and Find Full Text PDFDrug Discov Today Technol
December 2018
Target-specific killing of tumor cells with antibody-drug conjugates (ADCs) is an elegant concept in the continued fight against cancer. However, despite more than 20 years of clinical development, only four ADC have reached market approval, while at least 50 clinical programs were terminated early. The high attrition rate of ADCs may, at least in part, be attributed to heterogeneity and instability of conventional technologies.
View Article and Find Full Text PDFReaction of cyclopropanated trans-cyclooctene (cpTCO) with in situ generated ortho-quinone is an efficient tool for bioorthogonal protein conjugation. The (4+2)-cycloaddition of cpTCO with ortho-quinone is significantly faster than its cyclooctyne counterpart (BCN). Orthogonal, tandem cpTCO-quinone and BCN-azide cycloadditions afforded a homogeneous, dual labelled antibody-drug conjugate.
View Article and Find Full Text PDFDespite tremendous efforts in the field of targeted cancer therapy with antibody-drug conjugates (ADCs), attrition rates have been high. Historically, the priority in ADC development has been the selection of target, antibody, and toxin, with little focus on the nature of the linker. We show here that a short and polar sulfamide spacer (HydraSpace™, Oss, The Netherlands) positively impacts ADC properties in various ways: (a) efficiency of conjugation; (b) stability; and (c) therapeutic index.
View Article and Find Full Text PDFStimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne-1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH of 4.5, 7.
View Article and Find Full Text PDFMica is the substrate of choice for microscopic visualization of a wide variety of intricate nanostructures. Unfortunately, the lack of a facile strategy for its modification has prevented the on-mica assembly of nanostructures. Herein, we disclose a convenient catechol-based linker that enables various surface-bound metal-free click reactions, and an easy modification of mica with DNA nanostructures and a horseradish peroxidase mimicking hemin/G-quadruplex DNAzyme.
View Article and Find Full Text PDFGenetically encoded tyrosine (Y-tag) can be utilized as a latent anchor for inducible and site-selective conjugation. Upon oxidation of tyrosine with mushroom tyrosinase, strain-promoted cycloaddition (SPOCQ) of the resulting 1,2-quinone with various bicyclo[6.1.
View Article and Find Full Text PDFTop Curr Chem (Cham)
April 2016
A nearly forgotten reaction discovered more than 60 years ago-the cycloaddition of a cyclic alkyne and an organic azide, leading to an aromatic triazole-enjoys a remarkable popularity. Originally discovered out of pure chemical curiosity, and dusted off early this century as an efficient and clean bioconjugation tool, the usefulness of cyclooctyne-azide cycloaddition is now adopted in a wide range of fields of chemical science and beyond. Its ease of operation, broad solvent compatibility, 100 % atom efficiency, and the high stability of the resulting triazole product, just to name a few aspects, have catapulted this so-called strain-promoted azide-alkyne cycloaddition (SPAAC) right into the top-shelf of the toolbox of chemical biologists, material scientists, biotechnologists, medicinal chemists, and more.
View Article and Find Full Text PDFThe γ-amino alcohol structural motif is often encountered in drugs and natural products. We developed two complementary catalytic diastereoselective methods for the synthesis of N-PMP-protected γ-amino alcohols from the corresponding ketones. The anti-products were obtained through Ir-catalyzed asymmetric transfer hydrogenation, the syn-products via Rh-catalyzed asymmetric hydrogenation.
View Article and Find Full Text PDFA robust, generally applicable, nongenetic technology is presented to convert monoclonal antibodies into stable and homogeneous ADCs. Starting from a native (nonengineered) mAb, a chemoenzymatic protocol allows for the highly controlled attachment of any given payload to the N-glycan residing at asparagine-297, based on a two-stage process: first, enzymatic remodeling (trimming and tagging with azide), followed by ligation of the payload based on copper-free click chemistry. The technology, termed GlycoConnect, is applicable to any IgG isotype irrespective of glycosylation profile.
View Article and Find Full Text PDFCitrullination is the conversion of peptidylarginine to peptidylcitrulline, which is catalyzed by peptidylarginine deiminases. This conversion is involved in different physiological processes and is associated with several diseases, including cancer and rheumatoid arthritis. A common method to detect citrullinated proteins relies on anti-modified citrulline antibodies directed to a specific chemical modification of the citrulline side chain.
View Article and Find Full Text PDFGlycosaminoglycan (GAG) polysaccharides have been implicated in a variety of cellular processes, and alterations in their amount and structure have been associated with diseases such as cancer. In this study, we probed 11 sugar analogs for their capacity to interfere with GAG biosynthesis. One analog, with a modification not directly involved in the glycosidic bond formation, 6F-N-acetyl-d-galactosamine (GalNAc) (Ac3), was selected for further study on its metabolic and biologic effect.
View Article and Find Full Text PDFWe have synthesized biologically relevant 6-aza-8-oxa[3.2.1]bicyclooctane scaffolds in a five-step procedure starting from furfural.
View Article and Find Full Text PDFStrain-promoted oxidation-controlled cyclo-octyne-1,2-quinone cycloaddition (SPOCQ) is a fast and activatable cross-linking strategy for hydrogel formation. Gelation is induced by oxidation, which is performed both chemically using sodium periodate and enzymatically using mushroom tyrosinase. Due to the fast reaction kinetics, SPOCQ-formed hydrogels can be functionalized in one-pot with an azido-containing moiety using SPAAC cross-linking.
View Article and Find Full Text PDFA main challenge in the area of bioconjugation is to devise reactions that are both activatable and fast. Here, we introduce a temporally controlled reaction between cyclooctynes and 1,2-quinones, induced by facile oxidation of 1,2-catechols. This so-called strain-promoted oxidation-controlled cyclooctyne-1,2-quinone cycloaddition (SPOCQ) shows a remarkably high reaction rate when performed with bicyclononyne (BCN), outcompeting the well-known cycloaddition of azides and BCN by 3 orders of magnitude, thereby allowing a new level of orthogonality in protein conjugation.
View Article and Find Full Text PDFStrain-promoted azide-alkyne cycloaddition (SPAAC) as a conjugation tool has found broad application in material sciences, chemical biology and even in vivo use. However, despite tremendous effort, SPAAC remains fairly slow (0.2-0.
View Article and Find Full Text PDF