Publications by authors named "Floris Dammeijer"

Cytotoxic CD8 + T cell (CTL) exhaustion is driven by chronic antigen stimulation. Reversing CTL exhaustion with immune checkpoint blockade (ICB) has provided clinical benefits in different types of cancer. We, therefore, investigated whether modulating chronic antigen stimulation and T-cell receptor (TCR) signaling with an IL2-inducible T-cell kinase (ITK) inhibitor, could confer ICB responsiveness to ICB resistant solid tumors.

View Article and Find Full Text PDF

Despite the clinical success of immune checkpoint blockade (ICB), in certain cancer types, most patients with cancer do not respond well. Furthermore, in patients for whom ICB is initially successful, this is often short-lived because of the development of resistance to ICB. The mechanisms underlying primary or secondary ICB resistance are incompletely understood.

View Article and Find Full Text PDF

Immunotherapy with anti-PD1/PD-L1 is effective in only a subgroup of patients with malignant pleural mesothelioma (MPM). We investigated the efficacy of a combination of anti-PD1/PD-L1 and dendritic cell (DC) therapy to optimally induce effective anti-tumor immunity in MPM in both humans and mice. Data of nine MPM patients treated with DC therapy and sequential anti-PD1 treatment were collected and analyzed for progression-free survival (PFS) and overall survival (OS).

View Article and Find Full Text PDF

Terminal T-cell exhaustion poses a significant barrier to effective anticancer immunotherapy efficacy, with current drugs aimed at reversing exhaustion being limited. Recent investigations into the molecular drivers of T-cell exhaustion have led to the identification of chronic IL2 receptor (IL2R)-STAT5 pathway signaling in mediating T-cell exhaustion. We targeted the key downstream IL2R-intermediate JAK 3 using a clinically relevant highly specific JAK3-inhibitor (JAK3i; PF-06651600) that potently inhibited STAT5-phosphorylation in vitro.

View Article and Find Full Text PDF

Background: Gemcitabine is a frequently used chemotherapeutic agent but its effects on the immune system are incompletely understood. Recently, the randomized NVALT19-trial revealed that maintenance gemcitabine after first-line chemotherapy significantly prolonged progression-free survival (PFS) compared to best supportive care (BSC) in malignant mesothelioma. Whether these effects are paralleled by changes in circulating immune cell subsets is currently unknown.

View Article and Find Full Text PDF

Background: Almost all patients with malignant mesothelioma eventually have disease progression after first-line therapy. Previous studies have investigated maintenance therapy, but none has shown a great effect. We aimed to assess the efficacy and safety of switch-maintenance gemcitabine in patients with malignant mesothelioma without disease progression after first-line chemotherapy.

View Article and Find Full Text PDF

PD-1/PD-L1-checkpoint blockade therapy is generally thought to relieve tumor cell-mediated suppression in the tumor microenvironment but PD-L1 is also expressed on non-tumor macrophages and conventional dendritic cells (cDCs). Here we show in mouse tumor models that tumor-draining lymph nodes (TDLNs) are enriched for tumor-specific PD-1 T cells which closely associate with PD-L1 cDCs. TDLN-targeted PD-L1-blockade induces enhanced anti-tumor T cell immunity by seeding the tumor site with progenitor-exhausted T cells, resulting in improved tumor control.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is notoriously resistant to treatment including checkpoint-blockade immunotherapy. We hypothesized that a bimodal treatment approach consisting of dendritic cell (DC) vaccination to prime tumor-specific T cells, and a strategy to reprogram the desmoplastic tumor microenvironment (TME) would be needed to break tolerance to these pancreatic cancers. As a proof-of-concept, we investigated the efficacy of combined DC vaccination with CD40-agonistic antibodies in a poorly immunogenic murine model of PDAC.

View Article and Find Full Text PDF

Following publication of the original article [1], the authors reported an error in Table 1.

View Article and Find Full Text PDF

Dendritic cells (DCs) are antigen-presenting cells (APCs) that are essential for the activation of immune responses. In various malignancies, these immunostimulatory properties are exploited by DC-therapy, aiming at the induction of effective anti-tumor immunity by vaccination with antigen-loaded DCs. Depending on the type of DC-therapy used, long-term clinical efficacy upon DC-therapy remains restricted to a proportion of patients, likely due to lack of immunogenicity of tumor cells, presence of a stromal compartment, and the suppressive tumor microenvironment (TME), thereby leading to the development of resistance.

View Article and Find Full Text PDF

Dendritic cell (DC) based cancer immunotherapy aims at the activation of the immune system, and in particular tumor-specific cytotoxic T lymphocytes (CTLs) to eradicate the tumor. DCs represent a heterogeneous cell population, including conventional DCs (cDCs), consisting of cDC1s, cDC2s, plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs). These DC subsets differ both in ontogeny and functional properties, such as the capacity to induce CD4 and CD8 T-cell activation.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) and is essential both for B cell development and function of mature B cells. Shortly after its discovery, BTK was placed in the signal transduction pathway downstream of the B cell antigen receptor (BCR).

View Article and Find Full Text PDF

With the widespread application of immune checkpoint blocking antibodies (ICBs) for the treatment of advanced cancer, immunotherapy has proven to be capable of yielding unparalleled clinical results. However, despite the initial success of ICB-treatment, still a minority of patients experience durable responses to ICB therapy. A plethora of mechanisms underlie ICB resistance ranging from low immunogenicity, inadequate generation or recruitment of tumor-specific T cells or local suppression by stromal cells to acquired genetic alterations leading to immune escape.

View Article and Find Full Text PDF

New immunotherapeutic strategies are needed to induce effective antitumor immunity in all cancer patients. Malignant mesothelioma is characterized by a poor prognosis and resistance to conventional therapies. Infiltration of tumor-associated macrophages (TAM) is prominent in mesothelioma and is linked to immune suppression, angiogenesis, and tumor aggressiveness.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is still the leading cause of cancer death worldwide, with a poor prognosis. In the era of immunotherapies, the field is rapidly changing, and the clinician needs to be aware of the current state and future perspectives of immunotherapeutic strategies. In this review, we discuss the current status of immune checkpoint inhibitors, cancer vaccines and cellular therapies specifically in NSCLC.

View Article and Find Full Text PDF

Purpose: Programmed cell death protein-1- checkpoint blockers have recently been approved as second-line treatment for advanced non-small-cell lung cancer (NSCLC). Unfortunately, only a subgroup of patients responds and shows long-term survival to these therapies. Tumor vaccines and cellular immunotherapies could synergize with checkpoint blockade, but which of these treatments is most efficacious is unknown.

View Article and Find Full Text PDF