The CD8+ cytotoxic T lymphocyte (CTL) response is an important defence against viral invasion. Although CTL-mediated cytotoxicity has been widely studied for many years, the rate at which virus-infected cells are killed in vivo by the CTL response is poorly understood. To date the rate of CTL killing in vivo has been estimated for three virus infections but the estimates differ considerably, and killing of HIV-1-infected cells was unexpectedly low.
View Article and Find Full Text PDFWe previously proved that a histone deacetylase inhibitor (valproate, VPA) decreases the number of leukemic cells in bovine leukemia virus (BLV)-infected sheep. Here, we characterize the mechanisms initiated upon interruption of treatment. We observed that VPA treatment is followed by a decrease of the B cell counts and proviral loads (copies per blood volume).
View Article and Find Full Text PDFThe host immune response is believed to tightly control viral replication of deltaretroviruses such as human T-lymphotropic virus type 1 (HTLV-1) and bovine leukemia virus (BLV). However, this assumption has not been definitely proven in vivo. In order to further evaluate the importance of the immune response in the BLV model, we studied the fate of cells in which viral expression was transiently induced.
View Article and Find Full Text PDFBovine leukemia virus (BLV) is a retrovirus closely related to the human T-lymphotropic virus type 1 (HTLV-1). BLV is a major animal health problem worldwide causing important economic losses. A series of attempts were developed to reduce prevalence, chiefly by eradication of infected cattle, segregation of BLV-free animals and vaccination.
View Article and Find Full Text PDFBull Mem Acad R Med Belg
September 2011
One of the parameters characterizing leukemia is an increase in the peripheral blood cell numbers. As a deregulation of homeostasis, this pathological process might result from an alteration of different parameters modulating cell dynamics. In this context, we studied homeostasis during infection of sheep infected by bovine leukemia virus (BLV).
View Article and Find Full Text PDFBackground: Bovine Leukemia virus (BLV) is a deltaretrovirus that induces lymphoproliferation and leukemia in ruminants. In ex vivo cultures of B lymphocytes isolated from BLV-infected sheep show that spontaneous apoptosis is reduced. Here, we investigated the involvement of reactive oxygen species (ROS) in this process.
View Article and Find Full Text PDFInfection by delta-retroviruses such as human T-lymphotropic virus type 1 (HTLV-1) and bovine leukemia virus (BLV) is mostly asymptomatic. Indeed, only a minority (<5%) of delta-retrovirus infected hosts will develop either lymphoproliferative or neurodegenerative diseases after long latency periods. In fact, the host immune response is believed to tightly control viral replication but this assumption has not been definitely proven in vivo.
View Article and Find Full Text PDFHTLV-1 (human T-lymphotropic virus type 1) and BLV (bovine leukemia virus) are two related retroviruses infecting CD4+ and B lymphocytes in humans and ruminants, respectively. During infection, the host-pathogen interplay is characterized by very dynamic kinetics resulting in equilibrium between the virus, which attempts to proliferate, and the immune response, which seeks to exert tight control of the virus. A major determinant of disease induction by both viruses is the accumulation of provirus in peripheral blood.
View Article and Find Full Text PDFBovine leukemia virus (BLV) is a deltaretrovirus that infects and induces accumulation of B-lymphocytes in the peripheral blood and lymphoid tissues of cattle, leading to leukemia/lymphoma. BLV can also be experimentally transmitted to sheep, in which disease appears earlier and at higher frequencies. Abnormal accumulation of leukemic B-lymphocytes results from an alteration of different parameters that include cell proliferation and death as well as migration to lymphoid tissues.
View Article and Find Full Text PDFVirologie (Montrouge)
December 2007
Bovine leukemia virus (BLV) is the etiological agent of a lymphoproliferative disease in cattle. This retrovirus can also be experimentally transmitted to sheep, in which the pathology is more rapid and more frequent. This review summarizes the current knowledge on the BLV virus and more particularly on its role in lymphocyte homeostasis and induction of pathogenesis.
View Article and Find Full Text PDFBased on a reverse genetics approach, we previously reported that bovine leukemia virus (BLV) mutants harboring deletions in the accessory R3 and G4 genes persist at very low proviral loads and are unable to induce leukemia or lymphoma in sheep, indicating that these R3 and G4 gene sequences are required for pathogenesis. We now show that lymphoma can occur, albeit infrequently (1 case of 20) and after extended periods of latency (7 years). Direct sequencing and reinfection experiments demonstrated that lymphomagenesis was not due to the reversion of the mutant to the wild type.
View Article and Find Full Text PDFIn 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis.
View Article and Find Full Text PDFBovine Leukemia virus (BLV) is the natural etiological agent of a lymphoproliferative disease in cattle. BLV can also be transmitted experimentally to a related ruminant species, sheep, in which the pathogenesis is more acute. Although both susceptible species develop a strong anti-viral immune response, the virus persists indefinitely throughout life, apparently at a transcriptionally silent stage, at least in a proportion of infected cells.
View Article and Find Full Text PDFLymphocyte homeostasis is determined by a critical balance between cell proliferation and death, an equilibrium which is deregulated in bovine leukemia virus (BLV)-infected sheep. We have previously shown that an excess of proliferation occurs in lymphoid tissues and that the peripheral blood population is prone to increased cell death. To further understand the mechanisms involved, we evaluated the physiological role of the spleen in this accelerated turnover.
View Article and Find Full Text PDFThe size of a lymphocyte population is primarily determined by a dynamic equilibrium between cell proliferation and death. Hence, lymphocyte recirculation between the peripheral blood and lymphoid tissues is a key determinant in the maintenance of cell homeostasis. Insights into these mechanisms can be gathered from large-animal models, where lymphatic cannulation from individual lymph nodes is possible.
View Article and Find Full Text PDFThe cytoplasmic dye carboxyfluorescein diacetate succinimidyl ester (CFSE) is used to quantify cell kinetics. It is particularly important in studies of lymphocyte homeostasis where its labelling of cells irrespective of their stage in the cell cycle makes it preferable to deuterated glucose and BrdU, which only label dividing cells and thus produce unrepresentative results. In the past, experiments have been limited by the need to obtain a clear separation of CFSE peaks forcing scientists to adopt a strategy of in vitro labelling of cells followed by their injection into the host.
View Article and Find Full Text PDFLeukemogenic viruses like human T-lymphotropic virus and bovine leukemia virus (BLV) presumably persist in the host partly by latent integration of the provirus in a fraction of infected cells, leading to accumulative increase in the outgrowth of transformed cells. Furthermore, viral infection also correlates with a blockade of the apoptotic mechanisms concomitant with an apparent latency of the host cell. Conceptually, induction of viral or cellular gene expression could thus also be used as a therapeutic strategy against retroviral-associated leukemia.
View Article and Find Full Text PDF