Plant Physiol Biochem
December 2024
Iron (Fe) chlorosis is very common in plants cultivated in calcareous soils of the Mediterranean basin and is usually corrected by the application of Fe chelates to the soil, which can have a negative impact on the environment. The aim of this experiment was to assess the role of quercetin, a natural compound widely present in plants and known to bind Fe, in correcting Fe chlorosis when supplied in the Hoagland nutrient solution. In this context, strawberry plants were grown at different Fe concentrations, with 0 (Fe0), 1 (Fe1) and 5 (Fe5) μM of Fe in the nutrient solution, until the onset of clear Fe chlorosis symptoms.
View Article and Find Full Text PDFMicroalgae are a promising feedstock with proven biostimulant activity that is enhanced by their biochemical components (e.g., amino acids and phytohormones), which turns them into an appealing feedstock to reduce the use of fertilisers in agriculture and improve crop productivity and resilience.
View Article and Find Full Text PDFand were tested as biocontrol agents against the phytopathogenic fungus . This evaluation was conducted through in vitro and in vivo trials with spinach ( L.).
View Article and Find Full Text PDFIron is an essential micronutrient for citrus, playing an important role in photosynthesis and yield. The aim of this paper was to evaluate the tolerance to Fe deficiency of five citrus rootstocks: sour orange (S), Carrizo citrange (C), (M), Troyer citrange (T), and Volkamer lemon (V). Plants were grown for 5 weeks in nutrient solution that contained the following Fe concentrations (in µM): 0, 5, 10, 15, and 20.
View Article and Find Full Text PDFPlant Physiol Biochem
October 2022
The large economic costs and environmental impacts of iron-chelate treatments has led to the search for alternative methods and compounds to control iron (Fe) deficiency chlorosis. Strawberry plants (Fragaria x ananassa) were grown in Hoagland's nutrient solution in a greenhouse with two levels of Fe: 0 and 10 μM Fe(III)-EDDHA. After 20 days, plants growing without Fe showed typical symptoms of Fe deficiency chlorosis in young leaves.
View Article and Find Full Text PDFAlgae have been consumed for millennia in several parts of the world as food, food supplements, and additives, due to their unique organoleptic properties and nutritional and health benefits. Algae are sustainable sources of proteins, minerals, and fiber, with well-balanced essential amino acids, pigments, and fatty acids, among other relevant metabolites for human nutrition. This review covers the historical consumption of algae in Europe, developments in the current European market, challenges when introducing new species to the market, bottlenecks in production technology, consumer acceptance, and legislation.
View Article and Find Full Text PDFThe nutritional composition and productivity of halophytes is strongly related to the biotic/abiotic stress to which these extremophile salt tolerant plants are subjected during their cultivation cycle. In this study, two commercial halophyte species ( and ) were cultivated at six levels of salinity using a soilless cultivation system. In this way, it was possible to understand the response mechanisms of these halophytes to salt stress.
View Article and Find Full Text PDFThe consumption of halophytes as healthy gourmet food has increased considerably in the past few years. However, knowledge on the nutritional profile of domesticated halophytes is scarce and little is known on which cultivation conditions can produce plants with the best nutritional and functional properties. In this context, Salicornia ramosissima J.
View Article and Find Full Text PDFTo evaluate the dynamic role of the ferric-chelate reductase enzyme (FCR) and to identify possible pathways of regulation of its activity in different plant organs an investigation was conducted by virus-induced gene silencing (VIGS) using tobacco rattle virus (TRV) to silence the ferric reductase oxidase gene (FRO1) that encodes the FCR enzyme. Half of Nicotiana benthamiana plants received the VIGS vector and the rest remained as control. Four treatments were imposed: two levels of Fe in the nutrient solution (0 or 2.
View Article and Find Full Text PDFTo provide information towards optimization of strategies to treat Fe deficiency, experiments were conducted to study the responses of Fe-deficient plants to the resupply of Fe. Strawberry (Fragaria × ananassa Duch.) was used as model plant.
View Article and Find Full Text PDFSeveral fruit trees are able to cope with iron (Fe) deficiency when grown in calcareous soils in the Mediterranean region, although information regarding well adapted slow-growing species is scarce, and the mechanisms activated by these species are not described in the literature. A crucial issue related to tolerance is the need to transport Fe over relatively long distances inside the plant. To evaluate the possible role of organic acids in the movement of Fe in tolerant plants, we studied the concentration of low molecular weight organic acids in several organs of 1-year old carob plants grown for 55 days in nutrient solutions without Fe (0µM Fe) or with 1µM Fe and 10µM Fe.
View Article and Find Full Text PDFBare-root transplants of strawberry (Fragaria ananassa Duch. cv. 'Selva') were transferred to nutrient solutions with or without iron (Fe).
View Article and Find Full Text PDF