Publications by authors named "Florin Emilian Turcanu"

Cardiovascular diseases (CVD) remain the leading cause of mortality among older adults. Early detection is critical as the prognosis for advanced-stage CVD is often poor. Consequently, non-invasive diagnostic tools that can assess hemodynamic function, particularly of the aorta, are essential.

View Article and Find Full Text PDF

Globally, there are several critical infrastructure networks (water and gas networks) whose disruption or destruction would significantly affect the maintenance of vital societal functions, such as the health, safety, security, and social or economic well-being of people. They would also have significant local, regional, and national impacts as a result of the inability to maintain those functions, and would have similar cross-border effects. The main objective of this article is to investigate by comparative numerical studies the structural response of three types of buried pipes made of different materials, primarily steel, concrete, and high-density polyethylene, resulting from the impact of the environment through exceptional external actions, such as explosions at the surface of the land in the vicinity of the laying areas.

View Article and Find Full Text PDF

Glass-reinforced plastic (GRP) composite materials are mainly used in the construction of pipes due to the wide range of sizes, ease of installation, adaptability to the specific situation in the field and, last but not least, the more competitive price as the nominal diameter increases. Their wide range of applications: drinking and raw water transport, sewerage, industrial waters, desalination plants, mining, etc., has led to the need to tailor the behaviour of the composite material to different fields, with pH values that are not neutral.

View Article and Find Full Text PDF

This article presents the experimental results obtained by the testing an experimental model of water distribution which is flexible and above-head mounted on a seismic platform, and their validation in a theoretical manner, but also by the Finite Element Method, using the ANSYS simulation program. This type of system shown by the experimental model is desired to be used in practice not only in seismic areas, but also in the areas of heavy road transport, landslides, etc. thorugh the use thereof in the most stressed points of the network (hearth entry/exit, before/after an elbow, etc.

View Article and Find Full Text PDF

At the end of 2019, a variation of a coronavirus, named SARS-CoV-2, has been identified as being responsible for a respiratory illness disease (COVID-19). Since ventilation is an important factor that influences airborne transmission, we proposed to study the impact of heating, ventilation and air-conditioning (HVAC) with a variable air volume (VAV) primary air system, on the dispersion of infectious aerosols, in a cardiac intensive care unit, using a transient simulation with computational fluid dynamics (CFD), based on the finite element method (FEM). We analyzed three scenarios that followed the dispersion of pathogen carrying expiratory droplets particles from coughing, from patients possibly infected with COVID-19, depending on the location of the patients in the intensive care unit.

View Article and Find Full Text PDF