A definitive diagnosis of Alzheimer's disease (AD), even in the presence of co-morbid neuropathology (occurring in > 50% of AD cases), is a significant unmet medical need that has obstructed the discovery of effective AD therapeutics. An AD-biomarker, the Morphometric Imaging (MI) assay on cultured skin fibroblasts, was used in a double-blind, allcomers (ages 55-90) trial of 3 patient cohorts: AD dementia patients, N = 25, all autopsy confirmed, non-AD dementia patients, N = 21-all autopsy or genetically confirmed; and non-demented control (AHC) patients N = 27. Fibroblasts cells isolated from 3-mm skin punch biopsies were cultured on a 3-D Matrigel matrix with movement dynamics quantified by image analysis.
View Article and Find Full Text PDFBryostatin 1, a potent activator of protein kinase C epsilon (PKCɛ), has been shown to reverse synaptic loss and facilitate synaptic maturation in animal models of Alzheimer's disease (AD), Fragile X, stroke, and other neurological disorders. In a single-dose (25 μg/m2) randomized double-blind Phase IIa clinical trial, bryostatin levels reached a maximum at 1-2 h after the start of infusion. In close parallel with peak blood levels of bryostatin, an increase of PBMC PKCɛ was measured (p = 0.
View Article and Find Full Text PDFThe inaccuracy of the diagnosis for Alzheimer's disease (AD) has made its therapeutic intervention difficult, particularly early enough to prevent significant neurodegeneration and cognitive dysfunction. Here, we describe a novel, highly accurate peripheral diagnostic for AD patients based on quantitatively measured aggregation rate of human skin fibroblasts. The elevated aggregation rate with increasing cell density in AD cases is the basis of this new biomarker.
View Article and Find Full Text PDFJ Alzheimers Dis
September 2013
Drugs to treat Alzheimer's disease (AD) have been unsuccessful in preventing its devastating cognitive deficits and progressive neurodegeneration. The lack of a definitive diagnostic for AD has been a major obstacle to AD drug discovery. Here, we describe a novel, highly accurate peripheral diagnostic for AD patients based on quantitatively measured complexity of skin-sampled fibroblast networks.
View Article and Find Full Text PDFSpatiotemporal networks are studied in a photosensitive Belousov-Zhabotinsky medium that allows both local and nonlocal transmission of excitation. Local transmission occurs via propagating excitation waves, while nonlocal transmission takes place by nondiffusive jumps to destination sites linked to excited sites in the medium. Static, dynamic, and domain link networks are experimentally and computationally characterized.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2002
Propagating wave segments are stabilized to a constant size and shape by applying negative feedback from the measured wave area to the excitability of the medium. The locus of steady-state wave size as a function of excitability defines the perturbation threshold for the initiation of spiral waves. This locus also defines the excitability boundary for spiral wave behavior in active media.
View Article and Find Full Text PDFIntricate patterns of wave propagation are exhibited in a chemical reaction-diffusion system with spatiotemporal feedback. Wave behavior is controlled by feedback-regulated excitability gradients that guide propagation in specified directions. Waves interacting with boundaries and with other waves are observed when interaction terms are incorporated into the control algorithm.
View Article and Find Full Text PDF