Background: Schistosomiasis is a neglected tropical disease caused by trematodes of the genus Schistosoma, with a limited treatment, mainly based on the use of praziquantel (PZQ). Currently, several aspartic proteases genes have already been identified within the genome of Schistosoma species. At least one enzyme encoded from this gene family (SmAP), named SmCD1, has been validated for the development of schistosomicidal drugs, since it has a key role in haemoglobin digestion by worms.
View Article and Find Full Text PDFSARS-CoV-2 is the causative agent of COVID-19 and is responsible for the current global pandemic. The viral genome contains 5 major open reading frames of which the largest ORF1ab codes for two polyproteins, pp1ab and pp1a, which are subsequently cleaved into 16 nonstructural proteins (nsp) by two viral cysteine proteases encoded within the polyproteins. The main protease (Mpro, nsp5) cleaves the majority of the nsp's, making it essential for viral replication and has been successfully targeted for the development of antivirals.
View Article and Find Full Text PDFSchistosomiasis is a parasitic disease caused by trematode worms of the genus and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious infection that may break the healthcare system of several countries. Here, we aimed at presenting a critical view of ongoing drug repurposing efforts for COVID-19 as well as discussing opportunities for development of new treatments based on current knowledge of the mechanism of infection and potential targets within. Finally, we also discuss patent protection issues, cost effectiveness and scalability of synthetic routes for some of the most studied repurposing candidates since these are key aspects to meet global demand for COVID-19 treatment.
View Article and Find Full Text PDFExpert Opin Drug Discov
December 2019
: The timely identification biologically active chemicals, in disease relevant screening assays, is a major endeavor in drug discovery. The existence of frequent hitters (FHs) in non-related assays poses a formidable challenge in terms of whether to consider these molecules as chemical gold or promiscuous non-selective reactive trash (also known as PAINS - pan assay interference compounds).: In this review, the authors bring together expertize in synthetic chemistry, cheminformatics and biochemistry, three key areas for dealing with FHs.
View Article and Find Full Text PDFContext: Bauhinia L. species, including Bauhinia holophylla (Bong.) Steud.
View Article and Find Full Text PDFPhospholipases A2 (PLAs) comprise a superfamily of glycerophospholipids hydrolyzing enzymes present in many organisms in nature, whose catalytic activity was majorly unveiled by analysis of snake venoms. The latter have pharmaceutical and biotechnological interests and can be divided into different functional sub-classes. Our goal was to identify important residues and their relation to the functional and class-specific characteristics in the PLAs family with special emphasis on snake venom PLAs (svPLAs).
View Article and Find Full Text PDFBackground And Objectives: Semantic text annotation enables the association of semantic information (ontology concepts) to text expressions (terms), which are readable by software agents. In the scientific scenario, this is particularly useful because it reveals a lot of scientific discoveries that are hidden within academic articles. The Biomedical area has more than 300 ontologies, most of them composed of over 500 concepts.
View Article and Find Full Text PDFSchistosomiasis is a debilitating neglected tropical disease, caused by flatworms of Schistosoma genus. The treatment relies on a single drug, praziquantel (PZQ), making the discovery of new compounds extremely urgent. In this work, we integrated QSAR-based virtual screening (VS) of Schistosoma mansoni thioredoxin glutathione reductase (SmTGR) inhibitors and high content screening (HCS) aiming to discover new antischistosomal agents.
View Article and Find Full Text PDFSchistosomiasis is a neglected tropical disease that affects millions of people worldwide. Thioredoxin glutathione reductase of Schistosoma mansoni (SmTGR) is a validated drug target that plays a crucial role in the redox homeostasis of the parasite. We report the discovery of new chemical scaffolds against S.
View Article and Find Full Text PDFBioorg Med Chem
April 2016
Chagas disease is a tropical disease caused by the parasite Trypanosoma cruzi, which is endemic in Central and South America. Few treatments are available with effectiveness limited to the early (acute) stage of disease, significant toxicity and widespread drug resistance. In this work we report the outcome of a HTS-ready assay chemical library screen to identify novel, nontoxic, small-molecule inhibitors of T.
View Article and Find Full Text PDFBJ-48, a serine protease from the venom of Bothrops jararacussu, was purified to homogeneity using affinity chromatography on p-aminobenzamidine-agarose followed by HPLC gel filtration. BJ-48 presented 52kDa by SDS-PAGE analysis and 48,036Da by electron spray mass spectrometry. The enzyme was shown to be highly glycosylated with 42% of N-linked carbohydrates composed of Fuc(1):GalN(4):GlcN(5):Gal(1):Man(2) and a high content of sialic acid residues (8-12%).
View Article and Find Full Text PDF