Purpose: Understanding resistance to selective FGFR inhibitors is crucial to improve the clinical outcomes of patients with FGFR2-driven malignancies.
Experimental Design: We analyzed sequential ctDNA, ± whole-exome sequencing, or targeted next-generation sequencing on tissue biopsies from patients with tumors harboring activating FGFR2 alterations progressing on pan-FGFR-selective inhibitors, collected in the prospective UNLOCK program. FGFR2::BICC1 Ba/F3 and patient-derived xenograft models were used for functional studies.
Purpose: Lorlatinib is a third-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor with proven efficacy in patients with ALK-rearranged lung cancer previously treated with first- and second-generation ALK inhibitors. Beside compound mutations in the kinase domain, other resistance mechanisms driving lorlatinib resistance remain unknown. We aimed to characterize the mechanisms of resistance to lorlatinib occurring in patients with -rearranged lung cancer and design new therapeutic strategies in this setting.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T.
View Article and Find Full Text PDFTranscription is a stochastic process occurring mostly in episodic bursts. Although the local chromatin environment is known to influence the bursting behavior on long timescales, the impact of transcription factors (TFs)--especially in rapidly inducible systems--is largely unknown. Using fluorescence in situ hybridization and computational models, we quantified the transcriptional activity of the proto-oncogene c-Fos with single mRNA accuracy at individual endogenous alleles.
View Article and Find Full Text PDF