Publications by authors named "Floriana M Farina"

In December 2019, a number of subjects presenting with an unexplained pneumonia-like illness were suspected to have a link to a seafood market in Wuhan, China. Subsequently, this illness was identified as the 2019-novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the World Committee on Virus Classification. Since its initial identification, the virus has rapidly sperad across the globe, posing an extraordinary challenge for the medical community.

View Article and Find Full Text PDF

The CXC chemokine receptor 4 (CXCR4) in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) is crucial for vascular integrity. The atheroprotective functions of CXCR4 in vascular cells may be counteracted by atherogenic functions in other nonvascular cell types. Thus, strategies for cell-specifically augmenting CXCR4 function in vascular cells are crucial if this receptor is to be useful as a therapeutic target in treating atherosclerosis and other vascular disorders.

View Article and Find Full Text PDF

Most of the human genome is transcribed into non-coding RNAs (ncRNAs), which encompass a heterogeneous family of transcripts including microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and others. Although the detailed modes of action of some classes are not fully elucidated, the common notion is that ncRNAs contribute to sculpting gene expression of eukaryotic cells at multiple levels. These range from the regulation of chromatin remodeling and transcriptional activity to post-transcriptional regulation of messenger RNA splicing, stability, and decay.

View Article and Find Full Text PDF
Article Synopsis
  • DOT1L is identified as a significant epigenetic factor that induces dimethylation of histone H3 at lysine 79, which impacts the phenotype of vascular smooth muscle cells (VSMCs) and contributes to atherosclerosis progression.
  • Gene expression studies revealed that DOT1L is upregulated in VSMCs when stimulated, and its expression is specifically localized in the VSMC compartment of atherosclerotic lesions in both mice and humans.
  • Deleting the Dot1l gene in VSMCs significantly reduced atherosclerosis progression, suggesting that DOT1L could be a valuable target for therapeutic interventions in vascular diseases.
View Article and Find Full Text PDF

The role of single nucleotide polymorphisms (SNPs) in the etiopathogenesis of cardiovascular diseases is well known. The effect of SNPs on disease predisposition has been established not only for protein coding genes but also for genes encoding microRNAs (miRNAs). The miR-143/145 cluster is smooth muscle cell-specific and implicated in the pathogenesis of atherosclerosis.

View Article and Find Full Text PDF

The inflammatory human chemokine CXCL5 interacts with the G protein-coupled receptor CXCR2 to induce chemotaxis and activation of neutrophils. CXCL5 also has weak agonist activity toward CXCR1. The N-terminus of CXCL5 can be modified by proteolytic cleavage or deimination of Arg to citrulline (Cit), and these modifications can occur separately or together.

View Article and Find Full Text PDF

Deciphering the molecular alterations leading to disease initiation and progression is currently crucial to identify the most relevant targets for precision therapy in cancer patients. Cancers express a complex chemokine network influencing leucocyte infiltration and angiogenesis. Moreover, malignant cells also express a selective repertoire of chemokine receptors that sustain their growth and spread.

View Article and Find Full Text PDF

Rationale: MicroRNAs (miRNAs, miRs) are small noncoding RNAs that modulate gene expression by negatively regulating translation of target genes. Although the role of several miRNAs in vascular smooth muscle cells (VSMCs) has been extensively characterized, the function of miRNA-128-3p (miR-128) is still unknown.

Objective: To determine if miR-128 modulates VSMC phenotype and to define the underlying mechanisms.

View Article and Find Full Text PDF

Cardiovascular disease remains the number one cause of death and disability worldwide despite significant improvements in diagnosis, prevention, and early intervention efforts. There is an urgent need for improved understanding of cardiovascular processes responsible for disease development in order to develop more effective therapeutic strategies. Recent knowledge gleaned from the study of epigenetic mechanisms in the vasculature has uncovered new potential targets for intervention.

View Article and Find Full Text PDF

Rationale: microRNAs (miRNAs) modulate gene expression by repressing translation of targeted genes. Previous work has established a role for miRNAs in regulating vascular smooth muscle cell (VSMC) activity. Whether circular RNAs are involved in the modulation of miRNA activity in VSMCs is unknown.

View Article and Find Full Text PDF

Adult vascular smooth muscle cells (VSMCs) dedifferentiate in response to extracellular cues such as vascular damage and inflammation. Dedifferentiated VSMCs are proliferative, migratory, less contractile, and can contribute to vascular repair as well as to cardiovascular pathologies such as intimal hyperplasia/restenosis in coronary artery and arterial aneurysm. We here demonstrate the role of ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) as an epigenetic master regulator of VSMC plasticity.

View Article and Find Full Text PDF

Diagnosis of Arrhythmogenic CardioMyopathy (ACM) is challenging and often late after disease onset. No circulating biomarkers are available to date. Given their involvement in several cardiovascular diseases, plasma microRNAs warranted investigation as potential non-invasive diagnostic tools in ACM.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) is the most frequent type of non-Hodgkin lymphoma. Despite a favorable therapeutic response to first-line chemo-immunotherapy, still 30-40% of patients is refractory, or relapse after this treatment. Thus, alternative strategies must be sought.

View Article and Find Full Text PDF