The combination of supersonic expansions with IR action spectroscopy techniques is the basis of many successful approaches to study cluster structure and dynamics. The effects of temperature and temperature evolution are important with regard to both the cluster synthesis and the cluster dynamics upon IR excitation. In the past the combination of the sodium doping technique with IR excitation enhanced near threshold photoionization has been successfully applied to study neutral, especially water clusters.
View Article and Find Full Text PDFSoft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science.
View Article and Find Full Text PDFIn water clusters containing 10-100 water molecules the structural transition takes place between "all surface" structures without internally solvated water molecules to amorphous water clusters with a three dimensionally structured interior. This structural evolution is explored with rigorous size selection by IR excitation modulated photoionization spectroscopy of sodium-doped (H2O)n clusters. The emergence of fully coordinated interior water molecules is observed by an increased relative absorption from 3200 to 3400 cm(-1) in agreement with theoretical predictions and earlier experimental studies.
View Article and Find Full Text PDFWater clusters with internally solvated water molecules are widespread models that mimic the local environment of the condensed phase. The appearance of stable (H2O)n cluster isomers having a fully coordinated interior molecule has been theoretically predicted to occur around the n = 20 size range. However, our current knowledge about the size regime in which those structures become energetically more stable has remained hypothetical from simulations in lieu of the absence of precisely size-resolved experimental measurements.
View Article and Find Full Text PDF