Publications by authors named "Florian Zikeli"

Ensuring the longevity of wooden constructions depends heavily on the preservation process. However, several traditional preservation methods involving fossil-based compounds have become outdated because they pose a significant risk to the environment and to human health. Therefore, the use of bio-based and bioactive solutions, such as essential oils, has emerged as a more sustainable alternative in protecting wood from biotic attacks.

View Article and Find Full Text PDF

Acidolysis lignins from the species L. and Dehnh. were isolated and characterized using high pressure size exclusion chromatography (HP-SEC), Fourier-transform (FTIR) infrared spectroscopy, analytical pyrolysis-gas chromatography-mass spectrometry (Py-GCMS), and two-dimensional heteronuclear single quantum coherence (2D HSQC) NMR spectroscopy.

View Article and Find Full Text PDF

After decades of utilization of fossil-based and environmentally hazardous compounds for wood preservation against fungal attack, there is a strong need to substitute those compounds with bio-based bioactive solutions, such as essential oils. In this work, lignin nanoparticles containing four essential oils from thyme species (, , , and Demeter) were applied as biocides in in vitro experiments to test their anti-fungal effect against two white-rot fungi ( and ) and two brown-rot fungi ( and ). Entrapment of essential oils provided a delayed release over a time frame of 7 days from the lignin carrier matrix and resulted in lower minimum inhibitory concentrations of the essential oils against the brown-rot fungi (0.

View Article and Find Full Text PDF

Wood coatings prolong the service life of wood-based products, but they are usually of synthetic origin. The aim of the present article is to reduce the fossil-based compounds in a commercial waterborne acrylic coating by CNC addition and to test its performance. The coatings were applied on European beech and Norway spruce wood in order to test durability against (brown wood rot) and (white wood rot).

View Article and Find Full Text PDF

Three different formulations of bio-based polyurethane (PU), varying the weight ratio between Organosolv lignin and a commercial isocyanate, were synthesized. The coating formulations were characterized by SEM, pyrolysis-GC/MS, FTIR spectroscopy and FTIR mapping, which confirmed the successful formation of urethane bonds between commercial isocyanate and hydroxyl groups deriving from lignin. The coatings were applied on beech wood samples to measure color and contact angles, and eventually FTIR mapping of the coated wood samples was performed.

View Article and Find Full Text PDF

Despite major efforts in recent years, lignin as an abundant biopolymer is still underutilized in material applications. The production of lignin nanoparticles with improved properties through a high specific surface area enables easier applicability and higher value applications. Current precipitation processes often show poor yields, as a portion of the lignin stays in solution.

View Article and Find Full Text PDF

Site conditions and forest management affect dendrometric parameters of chestnut (Castanea sativa Mill.) coppices, but there is modest knowledge on the effect of stand dendrometric characters on physical and mechanical wood characteristics. The aim of this study was to verify these relationships in chestnut coppices that were 12-14 years old.

View Article and Find Full Text PDF

Sustainability and ecotoxicity issues call for innovations regarding eco-friendly adhesives in the production of biocomposite wood materials, and solutions involving nano-scale and bio-based compounds represent a valid and promising target. One possible approach is to increase the performance of adhesives such as polyvinyl acetate (PVAc) or melamine-urea-formaldehyde (MUF) by means of nanoparticles in order to obtain a material with better mechanical and environmental resistance. When applying cellulose-based nanoparticles or tannin, the concept of a circular economy is successfully implemented into the forest/wood value chain, and chances are created to develop new value chains using byproducts of forestry operations.

View Article and Find Full Text PDF

Waterlogged archaeological wood comes from submerged archaeological sites (in lake, sea, river, or wetland) or from land waterlogged sites. Even if the wooden object seems to have maintained the original size and shape, the wood is more or less severely decayed because of chemical and biological factors which modify the normal ratio of cellulose and lignin in the cell wall. Drying procedures are necessary for the musealization but potentially cause severe shrinkages and collapses.

View Article and Find Full Text PDF

Lignin isolated from beech sawdust was used for the preparation of lignin nanoparticles (LNPs) with entrapped essential oil (EO) from cinnamon bark ( Blume), common thyme ( L.), and wild thyme ( L.) using a fast antisolvent method.

View Article and Find Full Text PDF

Lignin was isolated from wood wastes comprising Iroko sawdust (IR) and mixed sawdust from Iroko and Norway spruce (IRNS), furnished by a local wood houses producer. The respective acidolysis lignin fractions were structurally characterized using pyrolysis (Py)-GCMS, two-dimensional heteronuclear single quantum correlation nuclear magnetic resonance (2D HSQC NMR), Fourier-transform infrared FTIR and ultraviolet-visible (UV-VIS) spectroscopies, size exclusion chromatography, and standard wet-chemistry methods for Klason lignin and polysaccharides determination. The isolated lignin fractions were subsequently used for the preparation of lignin nanoparticles (LNPs) using a non-solvent method.

View Article and Find Full Text PDF