There is an unmet need in multiple sclerosis (MS) therapy for treatments to stop progressive disability. The development of treatments may be accelerated if novel biomarkers are developed to overcome the limitations of traditional imaging outcomes revealed in early phase trials. In January 2019, the International Progressive MS Alliance convened a standing expert panel to consider potential tissue fluid biomarkers in MS in general and in progressive MS specifically.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the most common monogenic cause of inherited intellectual and developmental disabilities. Mavoglurant, a selective metabotropic glutamate receptor subtype-5 antagonist, has shown positive neuronal and behavioral effects in preclinical studies, but failed to demonstrate any behavioral benefits in two 12-week, randomized, placebo-controlled, double-blind, phase IIb studies in adults and adolescents with FXS. Here we report the long-term safety (primary endpoint) and efficacy (secondary endpoint) results of the open-label extensions.
View Article and Find Full Text PDFBackground: Two phase 2 randomized, double-blind studies were designed to evaluate efficacy and safety of immediate-release (study 1) and modified-release (study 2) mavoglurant formulations in PD l-dopa-induced dyskinesia.
Methods: Patients were randomized to mavoglurant 100-mg or placebo (4:3) groups (study 1) and mavoglurant 200-mg, mavoglurant 150-mg, or placebo (2:1:1) groups (study 2). Primary outcome was antidyskinetic efficacy, as measured by change from baseline to week 12 in modified Abnormal Involuntary Movement Scale total score.
J Neurodev Disord
February 2016
Background: A phase II randomized, placebo-controlled, double-blind study and subsequent open-label extension study evaluated the efficacy, safety, and tolerability of mavoglurant (AFQ056), a selective metabotropic glutamate receptor subtype-5 antagonist, in treating behavioral symptoms in adolescent patients with fragile X syndrome (FXS). A novel method was applied to analyze changes in symptom domains in patients with FXS using the narratives associated with the clinician-rated Clinical Global Impression-Improvement (CGI-I) scale.
Methods: In the core study, patients were randomized to receive mavoglurant (25, 50, or 100 mg BID) or placebo over 12 weeks.
Fragile X syndrome (FXS), the most common cause of inherited intellectual disability and autistic spectrum disorder, is typically caused by transcriptional silencing of the X-linked FMR1 gene. Work in animal models has described altered synaptic plasticity, a result of the up-regulation of metabotropic glutamate receptor 5 (mGluR5)-mediated signaling, as a putative downstream effect. Post hoc analysis of a randomized, placebo-controlled, crossover phase 2 trial suggested that the selective mGluR5 antagonist mavoglurant improved behavioral symptoms in FXS patients with completely methylated FMR1 genes.
View Article and Find Full Text PDFExpert Opin Investig Drugs
January 2014
Introduction: Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. With no curative treatment available, current therapeutic approaches are aimed at symptom management. FXS is caused by silencing the FMR1 gene, which encodes FMRP; as loss of FMRP leads to the development of symptoms associated with FXS.
View Article and Find Full Text PDFRationale: Advances in understanding the underlying mechanisms of conditions such as fragile X syndrome (FXS) and autism spectrum disorders have revealed heterogeneous populations. Recent trials of novel FXS therapies have highlighted several challenges including subpopulations with possibly differential therapeutic responses, the lack of specific outcome measures capturing the full range of improvements of patients with FXS, and a lack of biomarkers that can track whether a specific mechanism is responsive to a new drug and whether the response correlates with clinical improvement.
Objectives: We review the phenotypic heterogeneity of FXS and the implications for clinical research in FXS and other neurodevelopmental disorders.
Background: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) gained general acceptance in the treatment of Parkinson's disease (PD).
Objective: To study the clinical outcome and the predicting factors of efficacy of chronic STN stimulation, while DBS electrodes were implanted under local or general anaesthesia with intra-operative electrophysiological guidance based on multi-unit recordings.
Methods: We included a large single-centre cohort of 54 patients with advanced PD (mean age: 59 years; disease duration: 14 years).
Objective: To assess the effects of focal motor cortex stimulation on motor performance and cortical excitability in patients with Parkinson's disease (PD).
Methods: Repetitive transcranial magnetic stimulation (rTMS) was performed on the left motor cortical area corresponding to the right hand in 12 'off-drug' patients with PD. The effects of subthreshold rTMS applied at 0.