While plasmonic particles can provide optical resonances in a wide spectral range from the lower visible up to the near-infrared, often, symmetry effects are utilized to obtain particular optical responses. By breaking certain spatial symmetries, chiral structures arise and provide robust chiroptical responses to these plasmonic resonances. Here, we observe strong chiroptical responses in the linear and nonlinear optical regime for chiral L-handed helicoid-III nanoparticles and quantify them by means of an asymmetric factor, the so-called g-factor.
View Article and Find Full Text PDF