Objective: Highly-undersampled, dynamic MRI reconstruction, particularly in multi-coil scenarios, is a challenging inverse problem. Unrolled networks achieve state-of-the-art performance in MRI reconstruction but suffer from long training times and extensive GPU memory cost.
Methods: In this work, we propose a novel training strategy for IMplicit UNrolled NEtworks (IMUNNE) for highly-undersampled, multi-coil dynamic MRI reconstruction.
Holographic displays can generate light fields by dynamically modulating the wavefront of a coherent beam of light using a spatial light modulator, promising rich virtual and augmented reality applications. However, the limited spatial resolution of existing dynamic spatial light modulators imposes a tight bound on the diffraction angle. As a result, modern holographic displays possess low étendue, which is the product of the display area and the maximum solid angle of diffracted light.
View Article and Find Full Text PDFLeft atrial (LA) fibrosis plays a vital role as a mediator in the progression of atrial fibrillation. 3D late gadolinium-enhancement (LGE) MRI has been proven effective in identifying LA fibrosis. Image analysis of 3D LA LGE involves manual segmentation of the LA wall, which is both lengthy and challenging.
View Article and Find Full Text PDFTo accelerate compressed sensing (CS) reconstruction of subsampled radial k-space data using a geometrically-derived density compensation function (gDCF) without significant loss in image quality.We developed a theoretical framework to calculate a gDCF based on Nyquist distance along the radial and circumferential directions of a discrete polar coordinate system. Our gDCF was compared against standard DCF (e.
View Article and Find Full Text PDFThe development of single-photon counting detectors and arrays has made tremendous steps in recent years, not the least because of various new applications, e.g., LIDAR devices.
View Article and Find Full Text PDFHighly accelerated real-time cine MRI using compressed sensing (CS) is a promising approach to achieve high spatio-temporal resolution and clinically acceptable image quality in patients with arrhythmia and/or dyspnea. However, its lengthy image reconstruction time may hinder its clinical translation. The purpose of this study was to develop a neural network for reconstruction of non-Cartesian real-time cine MRI k-space data faster (<1 min per slice with 80 frames) than graphics processing unit (GPU)-accelerated CS reconstruction, without significant loss in image quality or accuracy in left ventricular (LV) functional parameters.
View Article and Find Full Text PDFPurpose: To implement an integrated reconstruction pipeline including a graphics processing unit (GPU)-based convolutional neural network (CNN) architecture and test whether it reconstructs four-dimensional non-Cartesian, non-contrast material-enhanced MR angiographic k-space data faster than a central processing unit (CPU)-based compressed sensing (CS) reconstruction pipeline, without significant losses in data fidelity, summed visual score (SVS), or arterial vessel-diameter measurements.
Materials And Methods: Raw k-space data of 24 patients (18 men and six women; mean age, 56.8 years ± 11.
We introduce a system that exploits the screen and front-facing camera of a mobile device to perform three-dimensional deflectometry-based surface measurements. In contrast to current mobile deflectometry systems, our method can capture surfaces with large normal variation and wide field of view (FoV). We achieve this by applying automated multi-view panoramic stitching algorithms to produce a large FoV normal map from a hand-guided capture process without the need for external tracking systems, like robot arms or fiducials.
View Article and Find Full Text PDF