J Optim Theory Appl
September 2024
Dynamical systems theory has recently been applied in optimization to prove that gradient descent algorithms bypass so-called strict saddle points of the loss function. However, in many modern machine learning applications, the required regularity conditions are not satisfied. In this paper, we prove a variant of the relevant dynamical systems result, a center-stable manifold theorem, in which we relax some of the regularity requirements.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
July 2022
In this article, we develop a framework for showing that neural networks can overcome the curse of dimensionality in different high-dimensional approximation problems. Our approach is based on the notion of a catalog network, which is a generalization of a standard neural network in which the nonlinear activation functions can vary from layer to layer as long as they are chosen from a predefined catalog of functions. As such, catalog networks constitute a rich family of continuous functions.
View Article and Find Full Text PDF