Publications by authors named "Florian Rossmann"

Bacterial flagella differ in their number and spatial arrangement. In many species, the MinD-type ATPase FlhG (also YlxH/FleN) is central to the numerical control of bacterial flagella, and its deletion in polarly flagellated bacteria typically leads to hyperflagellation. The molecular mechanism underlying this numerical control, however, remains enigmatic.

View Article and Find Full Text PDF

Bacterial flagellar motility is controlled by the binding of CheY proteins to the cytoplasmic switch complex of the flagellar motor, resulting in changes in swimming speed or direction. Despite its importance for motor function, structural information about the interaction between effector proteins and the motor are scarce. To address this gap in knowledge, we used electron cryotomography and subtomogram averaging to visualize such interactions inside Caulobacter crescentus cells.

View Article and Find Full Text PDF

Bacteria switch only intermittently to motile planktonic lifestyles under favorable conditions. Under chronic nutrient deprivation, however, bacteria orchestrate a switch to stationary phase, conserving energy by altering metabolism and stopping motility. About two-thirds of bacteria use flagella to swim, but how bacteria deactivate this large molecular machine remains unclear.

View Article and Find Full Text PDF

Bacteria commonly exhibit a high degree of cellular organization and polarity which affect many vital processes such as replication, cell division, and motility. In and other bacteria, HubP is a polar marker protein which is involved in proper chromosome segregation, placement of the chemotaxis system, and various aspects of pilus- and flagellum-mediated motility. Here, we show that HubP also recruits a transmembrane multidomain protein, PdeB, to the flagellated cell pole.

View Article and Find Full Text PDF

Bacterial flagella are helical proteinaceous fibers, composed of the protein flagellin, that confer motility to many bacterial species. The genomes of about half of all flagellated species include more than one flagellin gene, for reasons mostly unknown. Here we show that two flagellins (FlaA and FlaB) are spatially arranged in the polar flagellum of Shewanella putrefaciens, with FlaA being more abundant close to the motor and FlaB in the remainder of the flagellar filament.

View Article and Find Full Text PDF

In situ structural information on molecular machines can be invaluable in understanding their assembly, mechanism and evolution. Here, the use of electron cryotomography (ECT) to obtain significant insights into how an archetypal molecular machine, the bacterial flagellar motor, functions and how it has evolved is described. Over the last decade, studies using a high-throughput, medium-resolution ECT approach combined with genetics, phylogenetic reconstruction and phenotypic analysis have revealed surprising structural diversity in flagellar motors.

View Article and Find Full Text PDF

The bacterial flagellum is the principal organelle of motility in bacteria. Here, we address the question of size when applied to the chief flagellar protein flagellin and the flagellar filament. Surprisingly, nature furnishes multiple examples of 'giant flagellins' greater than a thousand amino acids in length, with large surface-exposed hypervariable domains.

View Article and Find Full Text PDF

Spatiotemporal regulation of cell polarity plays a role in many fundamental processes in bacteria and often relies on 'landmark' proteins which recruit the corresponding clients to their designated position. Here, we explored the localization of two multi-protein complexes, the polar flagellar motor and the chemotaxis array, in Shewanella putrefaciens CN-32. We demonstrate that polar positioning of the flagellar system, but not of the chemotaxis system, depends on the GTPase FlhF.

View Article and Find Full Text PDF

The number and location of flagella, bacterial organelles of locomotion, are species specific and appear in regular patterns that represent one of the earliest taxonomic criteria in microbiology. However, the mechanisms that reproducibly establish these patterns during each round of cell division are poorly understood. FlhG (previously YlxH) is a major determinant for a variety of flagellation patterns.

View Article and Find Full Text PDF

As numerous bacterial species, Shewanella putrefaciens CN-32 possesses a complete secondary flagellar system. A significant subpopulation of CN-32 cells induces expression of the secondary system under planktonic conditions, resulting in formation of one, sometimes two, filaments at lateral positions in addition to the primary polar flagellum. Mutant analysis revealed that the single chemotaxis system primarily or even exclusively addresses the main polar flagellar system.

View Article and Find Full Text PDF

We report two complete foamy retrovirus (FV) genomes isolated from Puma concolor, a large cat native to the Americas. Due to high overall genetic relatedness to known feline foamy viruses (FFVs), we propose the name Puma concolor FFV (FFVPc). The data confirm that felines are infected with distinct but closely related FVs.

View Article and Find Full Text PDF