Progressive accumulation of Amyloid-β (Aβ) deposits in the brain is a characteristic neuropathological hallmark of Alzheimer's disease (AD). During disease progression, extracellular Aβ plaques undergo specific changes in their composition by the sequential deposition of different modified Aβ species. Microglia are implicated in the restriction of amyloid deposits and play a major role in internalization and degradation of Aβ.
View Article and Find Full Text PDFRare coding variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2) confer an increased risk for Alzheimer's disease (AD) characterized by the progressive accumulation of aggregated forms of amyloid β peptides (Aβ). Aβ peptides are generated by proteolytic processing of the amyloid precursor protein (APP). Heterogeneity in proteolytic cleavages and additional post-translational modifications result in the production of several distinct Aβ variants that could differ in their aggregation behavior and toxic properties.
View Article and Find Full Text PDFAggregation and deposition of amyloid-β (Aβ) peptides in extracellular plaques and in the cerebral vasculature are prominent neuropathological features of Alzheimer's disease (AD) and closely associated with the pathogenesis of AD. Amyloid plaques in the brains of most AD patients and transgenic mouse models exhibit heterogeneity in the composition of Aβ deposits, due to the occurrence of elongated, truncated, and post-translationally modified Aβ peptides. Importantly, changes in the deposition of these different Aβ variants are associated with the clinical disease progression and considered to mark sequential phases of plaque and cerebral amyloid angiopathy (CAA) maturation at distinct stages of AD.
View Article and Find Full Text PDF