The major fibronectin (FN)-binding αβ and αβ integrins exhibit cooperativity during cell adhesion, migration and mechanosensing, through mechanisms that are not yet fully resolved. Exploiting mechanically tunable nano-patterned substrates, and peptidomimetic ligands designed to selectively bind corresponding integrins, we report that focal adhesions (FAs) of endothelial cells assembled on αβ integrin-selective substrates rapidly recruit αβ integrins, but not vice versa. Blocking of αβ integrin hindered FA maturation and cell spreading on αβ integrin-selective substrates, indicating a mechanism dependent on extracellular ligand binding and highlighting the requirement of αβ integrin engagement for efficient adhesion.
View Article and Find Full Text PDFA highly systematic approach for the development of both orally bioavailable and bioactive cyclic N-methylated hexapeptides as high affinity ligands for the integrin αvβ3 is based on two concepts: a) screening of systematically designed libraries with spatial diversity and b) masking of the peptide charge with a lipophilic protecting group. The key steps of the method are 1) initial design of a combinatorial library of N-methylated analogues of the stem peptide cyclo(d-Ala-Ala ); 2) selection of cyclic peptides with the highest intestinal permeability; 3) design of sublibraries with the bioactive RGD sequence in all possible positions; 4) selection of the best ligands for RGD-recognizing integrin subtypes; 5) fine-tuning of the affinity and selectivity by additional Ala to Xaa substitutions; 6) protection of the charged functional groups according to the prodrug concept to regain intestinal and oral permeability; 7) proof of biological effects in mice after oral administration.
View Article and Find Full Text PDFSystematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His-d-Nal(2')-NMe-Arg-Trp-Lys]-NH (15) and Ac-Nle-c[Asp-His-d-Nal(2')-NMe-Arg-NMe-Trp-NMe-Lys]-NH (17).
View Article and Find Full Text PDFIntegrins, a diverse class of heterodimeric cell surface receptors, are key regulators of cell structure and behaviour, affecting cell morphology, proliferation, survival and differentiation. Consequently, mutations in specific integrins, or their deregulated expression, are associated with a variety of diseases. In the last decades, many integrin-specific ligands have been developed and used for modulation of integrin function in medical as well as biophysical studies.
View Article and Find Full Text PDFEngineering biomaterials with integrin-binding activity is a very powerful approach to promote cell adhesion, modulate cell behavior, and induce specific biological responses at the surface level. The aim of this Review is to illustrate the evolution of surface-coating molecules in this field: from peptides and proteins with relatively low integrin-binding activity and receptor selectivity to highly active and selective peptidomimetic ligands. In particular, we will bring into focus the difficult challenge of achieving selectivity between the two closely related integrin subtypes αvβ3 and α5β1.
View Article and Find Full Text PDFCoordination of the specific functions of α5β1 and αvβ3 integrins is crucial for the precise regulation of cell adhesion, spreading and migration, yet the contribution of differential integrin-specific crosstalk to these processes remains unclear. To determine the specific functions of αvβ3 and α5β1 integrins, we used nanoarrays of gold particles presenting immobilized, integrin-selective peptidomimetic ligands. Integrin binding to the peptidomimetics is highly selective, and cells can spread on both ligands.
View Article and Find Full Text PDFThe interplay between specific integrin-mediated matrix adhesion and directional persistence in cell migration is not well understood. Here, we characterized fibroblast adhesion and migration on the extracellular matrix glycoproteins fibronectin and vitronectin, focusing on the role of α5β1 and αvβ3 integrins. Fibroblasts manifested high directional persistence in migration on fibronectin-, but not vitronectin-coated substrates, in a ligand density-dependent manner.
View Article and Find Full Text PDFUnlabelled: Despite in vivo mapping of integrin αvβ3 expression being thoroughly investigated in recent years, its clinical value is still not well defined. For imaging of angiogenesis, the integrin subtype α5β1 appears to be a promising target, for which purpose we designed the PET radiopharmaceutical (68)Ga-aquibeprin.
Methods: (68)Ga-aquibeprin was obtained by click-chemistry (CuAAC) trimerization of a α5β1 integrin-binding pseudopeptide on the triazacyclononane-triphosphinate (TRAP) chelator, followed by automated (68)Ga labeling.
Purpose: Integrins are transmembrane receptors responsible for cell-cell adhesion and cell-extracellular matrix binding and play an important role in angiogenesis and tumour metastasis. For this reason, integrins are increasingly used as targets for molecular imaging. Up to now interest has mostly been focused on the integrin subtype αvβ3.
View Article and Find Full Text PDFHuman melanocortin receptors (hMCRs) have been challenging targets to develop ligands that are explicitly selective for each of their subtypes. To modulate the conformational preferences of the melanocortin ligands and improve the biofunctional agonist/antagonist activities and selectivities, we have applied a backbone N-methylation approach on Ac-Nle-c[Asp-His-D-Nal(2')-Arg-Trp-Lys]-NH2 (Ac-Nle(4)-c[Asp(5),D-Nal(2')(7),Lys(10)]-NH2), a nonselective cyclic peptide antagonist at hMC3R and hMC4R and an agonist at hMC1R and hMC5R. Systematic N-methylated derivatives of Ac-Nle(4)-c[Asp(5),D-Nal(2')(7),Lys(10)]-NH2, with all possible backbone N-methylation combinations, have been synthesized and examined for their binding and functional activities toward melanocortin receptor subtypes 1, 3, 4, and 5 (hMCRs).
View Article and Find Full Text PDFOrthogonally functionalized binary micropatterned substrates are produced using a novel protocol. The use of adequate peptido-mimetics enables an unprecedented segregation of purified αvβ3 and α5β1 integrins in adjacent microislands and evidences the preference of U2OS cells to colocalize such receptors. Moreover, this tendency can be altered by varying the geometry and composition of the micropatterns.
View Article and Find Full Text PDFThe interaction of specific surface receptors of the integrin family with different extracellular matrix-based ligands is of utmost importance for the cellular adhesion process. A ligand consists of an integrin-binding group, here cyclic RGDfX, a spacer molecule that lifts the integrin-binding group from the surface and a surface anchoring group. (-RGDfX-) peptides are bound to gold nanoparticle structured surfaces via polyproline, polyethylene glycol or aminohexanoic acid containing spacers of different lengths.
View Article and Find Full Text PDFBackground: Integrins are extracellular matrix receptors involved in several pathologies. Despite homologies between the RGD-binding α5β1 and αvβ3 integrins, selective small antagonists for each heterodimer have been proposed. Herein, we evaluated the effects of such small antagonists in a cellular context, the U87MG cell line, which express both integrins.
View Article and Find Full Text PDFThe use of highly active and selective integrin ligands in combination with stent implantation is emerging as a promising alternative to the release of classical immunosuppressive drugs by current drug-eluting stents (DES), which has been associated with delayed vascular healing and late stent thrombosis. Herein we present the development and biological evaluation of the integrin ligand c(RGDf(NMe)Nal) as a potent anti-proliferative molecule that targets coronary artery smooth muscle cells (CASMCs). This peptide showed an antagonistic activity for αvβ3 and αvβ5 in the low-nanomolar range, and selectivity against the platelet receptor αIIbβ3.
View Article and Find Full Text PDFThe selective targeting of the αvβ3 integrin subtype without affecting the structurally closely related receptor α5β1 is crucial for understanding the details of their biological and pathological functions and thus of great relevance for diagnostic and therapeutic approaches in cancer treatment. Here, we present the synthesis of highly active RGD peptidomimetics for the αvβ3 integrin with remarkable selectivity against α5β1. Incorporation of a methoxypyridine building block into a ligand scaffold and variation of different functional moieties led to αvβ3-antagonistic activities in the low nanomolar or even subnanomolar range.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2013
Pattern seekers: For the two angiogenic relevant integrins α5β1 and αvβ3, functionalized derivatives of the selective antagonists 1 and 2 could target and discriminate between tumor cells in vivo based on their different integrin patterns and also delay tumor growth in vivo. In addition, the first α5β1-selective integrin antagonist that enables specific molecular imaging by positron emission tomography was developed.
View Article and Find Full Text PDFIntroduction: Integrins are heterodimeric cell surface receptors, which enable adhesion, proliferation, and migration of cells by recognizing binding motifs in extracellular matrix (ECM) proteins. As transmembrane linkers between the cytoskeleton and the ECM, they are able to recruit a huge variety of proteins and to influence signaling pathways bidirectionally, thereby regulating gene expression and cell survival. Hence, integrins play a key role in various physiological as well as pathological processes, which has turned them into an attractive target for pharmaceutical research.
View Article and Find Full Text PDFSelective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side-effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors.
View Article and Find Full Text PDFPoly(ethylene glycol) micropillars with gold nanopatterns on top are functionalized with two integrin selective ligands. This platform is a powerful new tool to determine the specific contribution of traction forces involved in cell adhesion mediated by α5β1- and αvβ3-integrins. Cells adherent via α5β1-integrins have a tendency to exert higher maximum forces than cells adhering via αvβ3-integrins.
View Article and Find Full Text PDFWe present a click chemistry-based molecular toolkit for the biofunctionalization of materials to selectively control integrin-mediated cell adhesion. To this end, α5β1-selective RGD peptidomimetics were covalently immobilized on Ti-based materials, and the capacity to promote the selective binding of α5β1 was evaluated using a solid-phase integrin binding assay. This functionalization strategy yielded surfaces with a nine-fold increased affinity for α5β1, in comparison to control samples, and total selectivity against the binding of the closely related integrin αvβ3.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2013
N-Methylation is one of the simplest chemical modifications often occurring in peptides and proteins of prokaryotes and higher eukaryotes. Over years of evolution, nature has employed N-methylation of peptides as an ingenious technique to modulate biological function, often as a mode of survival through the production of antibiotics. This small structural change can not only mobilize large protein complexes (as in the histone methylation), but also inhibits the action of enzymes by selective recognition of protein-protein interaction surfaces.
View Article and Find Full Text PDF