Lignins represent a high interest in cosmetics as promising multifunctional ingredients. Despite this, uncovering the sensory profile of lignin-based emulsions has remained an unexplored frontier. This study aims to bridge this gap by employing expert sensory evaluation and instrumental characterization to assess the sensory attributes of lignin-based emulsions.
View Article and Find Full Text PDFIn this article, we describe a proof of concept of the potential use of a biocatalytic process for the functionalization of technical soda lignins from wheat straw through the selective acylation of primary hydroxy groups of lignin oligomers by acetate or hexanoate, thus preserving their free, unreacted phenols. The selectivity and efficiency of the method, although they depend on the structural complexity of the starting material, have been proven on model compounds. Applied to technical lignins, the acylation yield is only moderate, due to structural and chemical features induced by the industrial mode of preparation of the lignins rather than to the lack of efficiency of the method.
View Article and Find Full Text PDFTechnical lignins produced as a by-product in biorefinery processes represent a potential source of renewable carbon. In consideration of the possibilities of the industrial transformation of this substrate into various valuable bio-based molecules, the biological deconstruction of a technical soda lignin by filamentous fungi was investigated. The ability of three basidiomycetes (, and ) to modify this material, the resultant structural and chemical changes, and the secreted proteins during growth on this substrate were investigated.
View Article and Find Full Text PDFA grass soda technical lignin (PB1000) underwent a process combining solvent fractionation and treatment with an ionic liquid (IL), and a comprehensive investigation of the structural modifications was performed by using high-performance size-exclusion chromatography, P NMR spectroscopy, thioacidolysis, and GC-MS. Three fractions with distinct reactivity were recovered from successive ethyl acetate (EA), butanone, and methanol extractions. In parallel, a fraction deprived of EA extractives was obtained.
View Article and Find Full Text PDF