Publications by authors named "Florian Patout"

We propose a model to describe the adaptation of a phenotypically structured population in a H-patch environment connected by migration, with each patch associated with a different phenotypic optimum, and we perform a rigorous mathematical analysis of this model. We show that the large-time behaviour of the solution (persistence or extinction) depends on the sign of a principal eigenvalue, [Formula: see text], and we study the dependency of [Formula: see text] with respect to H. This analysis sheds new light on the effect of increasing the number of patches on the persistence of a population, which has implications in agroecology and for understanding zoonoses; in such cases we consider a pathogenic population and the patches correspond to different host species.

View Article and Find Full Text PDF

Many populations can somehow adapt to rapid environmental changes. To understand this fast evolution, we investigate the genealogy of individuals inside those populations. More precisely, we use a deterministic model to describe the phenotypic density of a population under selection when the fitness optimum moves at constant speed.

View Article and Find Full Text PDF