The combination of molecular catalysts and semiconductor substrates in hybrid heterogeneous photo- or electrocatalytic devices could yield synergistic effects that result in enhanced activity and long-term stability. The extent of synergy strongly depends on the electronic interactions and energy level alignment between the molecular states and the valence and conduction band of the substrate. These properties of hybrid interfaces are investigated for a model system composed of protoporphyrin IX (PPIX) as a stand-in for molecular catalysts and a variety of semiconductor substrates.
View Article and Find Full Text PDFNanostructures exhibit a large surface-to-volume ratio, which makes them sensitive to their ambient conditions. In particular, GaN nanowires and nanofins react to their environment as adsorbates influence their (opto-) electronic properties. Charge transfer between the semiconductor surface and adsorbed species changes the surface band bending of the nanostructures, and the adsorbates can alter the rate of non-radiative recombination in GaN.
View Article and Find Full Text PDFMicromachines (Basel)
January 2022
Direct conversion of X-ray irradiation using a semiconductor material is an emerging technology in medical and material sciences. Existing technologies face problems, such as sensitivity or resilience. Here, we describe a novel class of X-ray sensors based on GaN thin film and GaN/AlGaN high-electron-mobility transistors (HEMTs), a promising enabling technology in the modern world of GaN devices for high power, high temperature, high frequency, optoelectronic, and military/space applications.
View Article and Find Full Text PDFDue to their intrinsically large surface-to-volume ratio, nanowires and nanofins interact strongly with their environment. We investigate the role of the main air constituents nitrogen, oxygen and water on the efficiency of radiative recombination in GaN nanostructures as a function of different surface treatments and at temperatures up to 200 °C. Oxygen and water exposures exhibit a complex behavior as they can both act quenching and enhancing on the photoluminescence intensity dependent on the temperature.
View Article and Find Full Text PDFGaN-on-diamond is a promising route towards reliable high-power transistor devices with outstanding performances due to better heat management, replacing common GaN-on-SiC technologies. Nevertheless, the implementation of GaN-on-diamond remains challenging. In this work, the selective area growth of GaN nanostructures on cost-efficient, large-scale available heteroepitaxial diamond (001) substrates by means of plasma-assisted molecular beam epitaxy is investigated.
View Article and Find Full Text PDFNanowire (NW) based devices for solar driven artificial photosynthesis have gained increasing interest in recent years due to the intrinsically high surface to volume ratio and the excellent achievable crystal qualities. However, catalytically active surfaces often suffer from insufficient stability under operational conditions. To gain a fundamental understanding of the underlying processes, the photochemical etching behavior of hexagonal and round GaN NWs in deionized water under illumination are investigated.
View Article and Find Full Text PDFSolar cells employing hybrid perovskites have proven to be a serious contender versus established thin-film photovoltaic technologies. Typically, current photovoltaic devices are built up layer by layer from a transparent substrate (bottom-up approach), while the deposition of the perovskite layer itself comes with many challenges including the control of crystal size, nucleation density and growth rate. On the other hand, single crystals have been used with great success for studying the fundamental properties of this new class of optoelectronic materials.
View Article and Find Full Text PDF