Publications by authors named "Florian Pabst"

The dielectric response of liquids reflects both reorientation of single molecular dipoles and collective modes, i.e., dipolar cross-correlations.

View Article and Find Full Text PDF

We investigate the reorientation dynamics of four octanol isomers with very different characteristics regarding the formation of hydrogen-bonded structures by means of photon-correlation spectroscopy (PCS) and broadband dielectric spectroscopy. PCS is largely insensitive to orientational cross-correlations and straightforwardly probes the α-process dynamics, thus allowing us to disentangle the complex dielectric relaxation spectra. The analysis reveals an additional dielectric relaxation contribution on time scales between the structural α-process and the Debye process.

View Article and Find Full Text PDF

The shape of the structural relaxation peak in the susceptibility spectra of liquids is of great interest, as it promises to provide information about the distribution of molecular mobilities and dynamic heterogeneity. However, recent studies suggest a generic shape of this peak near the glass transition temperature irrespective of the liquid under investigation, which somehow reduces the information contained in the peak shape. By contrast, at higher temperatures, say, around the melting point, the situation is different and the peak shape varies strongly between different liquids.

View Article and Find Full Text PDF

Ionogels are gels containing ions, often an ionic liquid (IL), and a gelling agent. They are promising candidates for applications including batteries, photovoltaics or fuel cells due to their chemical stability and high ionic conductivity. In this work we report on a thermo-irreversible ionic gel prepared from a mixture of the ionic liquid 1-butyl-3-methylimidazolium ([BMIM]) dicyanamide ([DCA]), water and gelatin, which combines the advantages of an ionic liquid with the low cost of gelatin.

View Article and Find Full Text PDF

The intensity of light scattered by liquids has been studied for over a century since the valuable microscopic information about the molecules can be obtained, such as the anisotropy of the molecular polarizability tensor or preferred orientations of neighboring molecules. However, in modern dynamic light scattering experiments, the scattering intensity is usually disregarded, unlike in dielectric spectroscopy, which can be considered as a complementary experimental method, where the dielectric strength is routinely evaluated. The reason lies partly on the fact that the exact form of the equations relating the macroscopically measured light scattering intensity to the microscopic properties of the molecules is debated in the literature.

View Article and Find Full Text PDF

Protein hydration shell dynamics plays a pivotal role in biochemical processes such as protein folding, enzyme function, molecular recognition and interaction with biological membranes. Thus, it is crucial to understand the mobility of the solvation shell at the surface of biomolecules. Triplet state solvation dynamics can reveal the slow dynamics of the solvation shell.

View Article and Find Full Text PDF

Nanoscale water clusters in an ionic liquid matrix, also called "water pockets," were previously found in some mixtures of water with ionic liquids containing hydrophilic anions. However, in these systems, at least partial crystallization occurs upon supercooling. In this work, we show for mixtures of 1-butyl-3-methylimidazolium dicyanamide with water that none of the components crystallizes up to a water content of 72 mol.

View Article and Find Full Text PDF

Characterizing the segmental dynamics of proteins, and intrinsically disordered proteins in particular, is a challenge in biophysics. In this study, by combining data from broadband dielectric spectroscopy (BDS) and both depolarized (DDLS) and polarized (PDLS) dynamic light scattering, we were able to determine the dynamics of a small peptide [ε-poly(lysine)] in water solutions in two different conformations (pure β-sheet at pH = 10 and a more disordered conformation at pH = 7). We found that the segmental (α-) relaxation, as probed by DDLS, is faster in the disordered state than in the folded conformation.

View Article and Find Full Text PDF

Molecular dynamics of ionic liquids in an electric field can be decomposed into contributions from translational motions of ions, rotational motions of permanent dipoles and - in the case of ions equipped with long alkyl-chains - motions of ionic aggregates. The discrimination of these contributions in the dielectric spectrum is quite involved, resulting in numerous controversies in the literature. Here, we use dielectric spectroscopy at ambient and elevated pressures of up to 550 MPa to monitor the changes of the observed processes in five supercooled ionic liquids with octyl-chains independent of pressure and temperature.

View Article and Find Full Text PDF

One of the unsolved problems of dynamics in supercooled liquids are the differences in spectral shape of the structural relaxation observed among different methods and substances, and a possible generic line shape has long been debated. We show that the light scattering spectra of very different systems, e.g.

View Article and Find Full Text PDF

The nonexponential shape of the α process observed in supercooled liquids is considered as one of the hallmarks of glassy dynamics and has thus been under study for decades, but is still poorly understood. For a polar van der Waals liquid, we show here-in line with a recent theory-that dipole-dipole correlations give rise to an additional process in the dielectric spectrum slightly slower than the α relaxation, which renders the resulting combined peak narrower than observed by other experimental techniques. This is reminiscent of the Debye-process found in monohydroxy alcohols.

View Article and Find Full Text PDF

We suggest a way to disentangle self- from cross-correlation contributions in the dielectric spectra of glycerol. Recently it was demonstrated for monohydroxy alcohols that a detailed comparison of the dynamic susceptibilities of photon correlation and broadband dielectric spectroscopy allows to unambiguously disentangle a collective relaxation mode known as the Debye process, which arises due to supramolecular structures, and the α-relaxation, which proves to be identical in both methods. In the present paper, we apply the same idea and analysis to the paradigmatic glass former glycerol.

View Article and Find Full Text PDF

Relaxation behavior of monohydroxy alcohols (monoalcohols) in broadband dielectric spectroscopy (BDS) is usually dominated by the Debye process. This process is regarded as a signature of the dynamics of transient supramolecular structures formed by H-bonding. In phenyl-propanols, the steric hindrance of the phenyl ring is assumed to influence chain formation and thereby to decrease or even suppress the intensity of the Debye process.

View Article and Find Full Text PDF

The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation in a measurement with a local dielectric probe might be expected to be different from the standard macroscopic dielectric experiment. In this work we present such local dielectric measurements obtained by triplet state solvation dynamics (TSD) and compare the results with macroscopic dielectric and light scattering data.

View Article and Find Full Text PDF

Nanoscale structures in ionic liquids (ILs) are usually identified by X-ray or neutron scattering techniques and occur when the alkyl chains of the cations are long enough to show the tendency to segregate into apolar domains. In search of dynamic evidence for these nanostructures, different experimental techniques recently reported bimodal dynamic susceptibility spectra. In all cases, the faster process observed was ascribed to the structural α-relaxation and the slower one to the relaxation of long-lived aggregates.

View Article and Find Full Text PDF

The slow Debye-like relaxation in the dielectric spectra of monohydroxy alcohols is a matter of long-standing debate. In the present Letter, we probe reorientational dynamics of 5-methyl-2-hexanol with dielectric spectroscopy and depolarized dynamic light scattering (DDLS) in the supercooled regime. While in a previous study of a primary alcohol no indication of the Debye peak in the DDLS spectra was found, we now for the first time report clear evidence of a Debye contribution in a monoalcohol in DDLS.

View Article and Find Full Text PDF

We revisit the reorientational dynamics of 1-propanol as a prototype of a monohydroxy alcohol and H-bonding system by dielectric spectroscopy (DS) and depolarized dynamic light scattering (DDLS). In particular, we address the question of whether the Debye relaxation, which is seen as a dominant process in DS, is visible in light scattering and discuss how the Johari-Goldstein (JG) β-process, which is also a prominent feature of the dielectric spectrum, appears in photon correlation spectroscopy. For that purpose we performed depolarized photon correlation experiments with an improved setup and performed additional time domain dielectric experiments which gives us the possibility to compare dielectric and light scattering data in a broad temperature range.

View Article and Find Full Text PDF

Background: Volatile breath biomarkers provide a non-invasive window to observe physiological and pathological processes in the body. This study was intended to assess the impact of heart surgery with extracorporeal circulation (ECC) onto breath biomarker profiles. Special attention was attributed to oxidative or metabolic stress during surgery and extracorporeal circulation, which can cause organ damage and poor outcome.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongac8osgiocmng60332ucms8oaafd5us8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once