Most of the 500+ cichlid species of Lake Victoria evolved very rapidly in the wake of an adaptive radiation within the last 15,000 years. All 500 species have evolved from just one out of five old cichlid lineages that colonized the lake. Endemic to the Lake Victoria region, Astatoreochromis alluaudi is a member of an old haplochromine lineage that never speciated in the region.
View Article and Find Full Text PDFStudying phenotypic and genetic differentiation between very young species can be very informative with regard to learning about processes of speciation. Identifying and characterizing genetic species structure and distinguishing it from spatial genetic structure within a species is a prerequisite for this and is often not given sufficient attention. Young radiations of cichlid fish are classical speciation study systems.
View Article and Find Full Text PDFAdaptive radiation research typically relies on the study of evolution in retrospective, leaving the predictive value of the concept hard to evaluate. Several radiations, including the cichlid fishes in the East African Great Lakes, have been studied extensively, yet no study has investigated the onset of the intraspecific processes of niche expansion and differentiation shortly after colonization of an adaptive zone by cichlids. Haplochromine cichlids of one of the two lineages that seeded the Lake Victoria radiation recently arrived in Lake Chala, a lake perfectly suited for within-lake cichlid speciation.
View Article and Find Full Text PDFTheory suggests that speciation with gene flow is most likely when both sexual and ecological selection are divergent or disruptive. Divergent sexual and natural selection on the visual system have been demonstrated before in sympatric, morphologically similar sister species of Lake Victoria cichlids, but this does not explain the subtle morphological differences between them. To investigate the significance of natural selection on morphology during speciation, we here ask whether the prevalence of disruptive ecological selection differs between sympatric sister species that are at different stages of speciation.
View Article and Find Full Text PDF