UsingBragg coherent x-ray diffraction imaging, we visualised three-dimensionally a single twinned-gold nanocrystal during the CO oxidation reaction. We describe the defect dynamics process occurring under operating conditions and indicate the correlation between the nucleation of highly strained regions at the surface of the nanocrystal and its catalytic activity. Understanding the twinning deformation mechanism sheds light on the creation of active sites, and could well contribute to the understanding of the catalytic behaviour of other catalysts.
View Article and Find Full Text PDFMitochondria are dynamic organelles that change morphology to adapt to cellular energetic demands under both physiological and stress conditions. Cardiomyopathies and neuronal disorders are associated with structure-related dysfunction in mitochondria, but three-dimensional characterizations of the organelles are still lacking. In this study, we combined high-resolution imaging and 3D electron density information provided by cryo-soft X-ray tomography to characterize mitochondria cristae morphology isolated from murine.
View Article and Find Full Text PDFUnderstanding catalysts strain dynamic behaviours is crucial for the development of cost-effective, efficient, stable and long-lasting catalysts. Here, we reveal in situ three-dimensional strain evolution of single gold nanocrystals during a catalytic CO oxidation reaction under operando conditions with coherent X-ray diffractive imaging. We report direct observation of anisotropic strain dynamics at the nanoscale, where identically crystallographically-oriented facets are qualitatively differently affected by strain leading to preferential active sites formation.
View Article and Find Full Text PDFLignin is a heterogeneous aromatic polymer responsible for cell wall stiffness and protection from pathogen attack. However, lignin represents a bottleneck to biomass degradation due to its recalcitrance related to the natural cell wall resistance to release sugars for fermentation or further processing. A biological approach involving genetics and molecular biology was used to disrupt lignin pathway synthesis and decrease lignin deposition.
View Article and Find Full Text PDFThe chemical properties of materials are dependent on dynamic changes in their three-dimensional (3D) structure as well as on the reactive environment. We report an 3D imaging study of defect dynamics of a single gold nanocrystal. Our findings offer an insight into its dynamic nanostructure and unravel the formation of a nanotwin network under CO oxidation conditions.
View Article and Find Full Text PDFPoly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) (F127) hydrogels have been used to deliver nitric oxide (NO) topically in biomedical applications. Here, the effect of F127 microenvironments on the photochemical NO release from S-nitrosoglutathione (GSNO) was investigated in F127 solutions 7.6 wt% 15 wt% and 22.
View Article and Find Full Text PDFWhen building artificial nanochannels, having a scalable robust platform with controlled morphology is important, as well as having the option for final functionalization of the channels for the selective transport of water and proteins. We have previously developed asymmetric membranes that have a surface layer of very sharp pore size distribution, surface charge and pore functionalization. Here, a more complex bioinspired platform is reported.
View Article and Find Full Text PDFUnlabelled: Topical nitric oxide (NO) delivery has been shown to accelerate wound healing. However, delivering NO to wounds at appropriate rates and doses requires new biomaterial-based strategies. Here, we describe the development of supramolecular interpolymer complex hydrogels comprising PEO-PPO-PEO (F127) micelles embedded in a poly(acrylic acid) (PAA) matrix, with S-nitrosoglutathione (GSNO) molecules dissolved in the hydrophilic domain.
View Article and Find Full Text PDFZnO/ZnS heterostructures have emerged as an attractive approach for tailoring the properties of particles comprising these semiconductors. They can be synthesized using low temperature sol-gel routes. The present work yields insight into the mechanisms involved in the formation of ZnO/ZnS nanostructures.
View Article and Find Full Text PDFIn this work the coherence properties of the synchrotron radiation beam from an X-ray undulator in a fourth-generation storage ring are analyzed. A slightly focused X-ray beam is simulated using a wavefront propagation through a non-redundant array of slits and the mutual coherence function is directly obtained and compared with the Gaussian-Schell approximation. The numerical wave propagation and the approximate analytical approaches are shown to agree qualitatively, and it is also shown that, when the coherent fraction is selected by a finite aperture before the focusing element, even achromatic focusing systems like total reflection mirrors become slightly chromatic.
View Article and Find Full Text PDFNucleation and growth of SBA-15 silica nanostructured particles with well-defined morphologies has been followed with time by small-angle X-ray scattering (SAXS) and ultrasmall-angle X-ray scattering (USAXS), using synchrotron radiation. Three different morphologies have been compared: platelets, toroids, and rods. SEM observations of the particles confirm that two key physical parameters control the morphology: the temperature and the stirring of the solution.
View Article and Find Full Text PDFThe question of the influence of nanoparticles (NPs) on chain dimensions in polymer nanocomposites (PNCs) has been treated mainly through the fundamental way using theoretical or simulation tools and experiments on well-defined model PNCs. Here we present the first experimental study on the influence of NPs on the polymer chain conformation for PNCs designed to be as close as possible to industrial systems employed in the tire industry. PNCs are silica nanoparticles dispersed in a styrene-butadiene-rubber (SBR) matrix whose NP dispersion can be managed by NP loading with interfacial coatings or coupling additives usually employed in the manufacturing mixing process.
View Article and Find Full Text PDFSynchrotron-radiation-based X-ray imaging techniques using tender X-rays are facing a growing demand, in particular to probe the K absorption edges of low-Z elements. Here, a mathematical model has been developed for estimating the detective quantum efficiency (DQE) at zero spatial frequency in the tender X-ray energy range for photon-counting detectors by taking into account the influence of electronic noise. The experiments were carried out with a Medipix3RX ASIC bump-bonded to a 300 µm silicon sensor at the Soft X-ray Spectroscopy beamline (D04A-SXS) of the Brazilian Synchrotron Light Laboratory (LNLS, Campinas, Brazil).
View Article and Find Full Text PDFExternal stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear.
View Article and Find Full Text PDFAn amphiphilic prodrug of gemcitabine, a cytidine analogue used clinically against various tumors, had been previously synthesized by covalent coupling to squalene, a natural isoprenoid chain. The resulting bioconjugate self-assembled spontaneously in water as nanoparticles, displaying an impressive activity both in vitro and in vivo. The aim of the present study was to determine the influence of the length of the isoprene moiety on the structure of the nanoparticles, in an attempt to establish a relationship between the chemical structure of the prodrug, its supramolecular organization, and its pharmacological activity.
View Article and Find Full Text PDFThe initial stage of calcium carbonate nucleation and growth, found usually in "natural" precipitation conditions, is still not well understood. The calcium carbonate formation for moderate supersaturation level could be achieved by an original method called the fast controlled precipitation (FCP) method. FCP was coupled with SAXS (small-angle X-ray scattering) measurements to get insight into the nucleation and growth mechanisms of calcium carbonate particles in Ca(HCO3)2 aqueous solutions.
View Article and Find Full Text PDFSqualene-based nucleolipids, including anticancer or antiviral prodrugs, gave rise to nanoparticles displaying a diversity of structures upon nanoprecipitation in water. Synchrotron small-angle X-ray scattering and cryo-TEM imaging revealed that both the nature of the nucleoside and the position of the squalene moiety relative to the nucleobase determined the self-assembly of the corresponding bioconjugates. It was found that small chemical differences resulted in major differences in the self-organization of nucleolipids when squalene was grafted onto the nucleobase whereas only lamellar phases were observed when squalene was linked to the sugar moiety.
View Article and Find Full Text PDFSelf-assembled nanoarchitectures based on biological molecules are attractive because of the simplicity and versatility of the building blocks. However, size control is still a challenge. This control is only possible when a given system is deeply understood.
View Article and Find Full Text PDFThe formation of two-dimensional (2D)-hexagonal (p6m) silica-based hybrid materials from concentrated micellar solutions (10 wt %) of two nonionic fluorinated surfactants, R(7)(F)(EO)(8) and R(8)(F)(EO)(9), is investigated in situ using synchrotron time-resolved small angle X-ray scattering (SAXS). The two surfactants form direct micelles with different structures prior to the silica precursor addition as demonstrated by SAXS and SANS. R(8)(F)(EO)(9) gives spherical micelles and R(7)(F)(EO)(8) more complex ones, modeled here as short wormlike micelles.
View Article and Find Full Text PDFThe magnetic 2D to 3D crossover behavior of well-ordered arrays of monodomain γ-Fe(2)O(3) spherical nanoparticles with different thicknesses has been investigated by magnetometry and Monte Carlo (MC) simulations. Using the structural information of the arrays obtained from grazing incidence small-angle X-ray scattering and scanning electron microscopy together with the experimentally determined values for the saturation magnetization and magnetic anisotropy of the nanoparticles, we show that MC simulations can reproduce the thickness-dependent magnetic behavior. The magnetic dipolar particle interactions induce a ferromagnetic coupling that increases in strength with decreasing thickness of the array.
View Article and Find Full Text PDFThe mechanisms of formation of organically modified (phenyl, vinyl, and methyl) silica materials with cubic Pm3n and hexagonal p6m periodic mesostructures obtained in one step in the presence of the cetyltrimethylammonium bromide (CTA(+)B) surfactant are reported in this study. Understanding the way these complex materials form is difficult but undoubtedly necessary for controlling the material structure and its properties because of the combined presence of surface organic groups and large surface areas. Here, the mechanism of formation is clarified on the basis of the modeling of time-resolved in situ small angle X-ray scattering (SAXS) experiments, with a specific focus on the micelle evolution during material formation.
View Article and Find Full Text PDFAqueous colloidal suspensions of clay platelets display a sol/gel transition that is not yet understood. Depending on the nature of the clay, liquid-crystalline behavior may also be observed. For example, the suspensions of beidellite display a nematic phase whereas those of montmorillonite do not.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2012
Dry aqueous foams made of anionic surfactant (SDS) and spherical gold nanoparticles are studied by small angle X-ray scattering and by optical techniques. To obtain stable foams, the surfactant concentration is well above the critical micelle concentration. The specular reflectivity signal obtained on a very thin film (thickness 20 nm) shows that functionalized nanoparticles (17 nm typical size) are trapped within the film in the form of a single monolayer.
View Article and Find Full Text PDFAmong noncovalent forces, electrostatic ones are the strongest and possess a rather long-range action. For these reasons, charges and counterions play a prominent role in self-assembly processes in water and therefore in many biological systems. However, the complexity of the biological media often hinders a detailed understanding of all the electrostatic-related events.
View Article and Find Full Text PDF