Metal halide perovskite solar cells (PSCs) have gained significant attention in thin-film photovoltaic research for their high power conversion efficiency (PCE) and facile fabrication processes. This study presents the use of inkjet printing to fabricate thin films of combinatorial mixed formamidinium tin-lead perovskites and evaluates their layer quality and device performance. Our findings demonstrate that incorporating Pb up to 50% into FASnI films enhances lattice stability.
View Article and Find Full Text PDFWe demonstrate the upscaling of inkjet-printed metal halide perovskite light-emitting diodes. To achieve this, the drying process, critical for controlling the crystallization of the perovskite layer, was optimized with an airblade-like slit nozzle in a gas flow assisted vacuum drying step. This yields large, continuous perovskite layers in light-emitting diodes with an active area up to 1600 mm.
View Article and Find Full Text PDFIrradiation-induced phase segregation in mixed methylammonium halide perovskite samples such as methylammonium lead bromide-iodide, MAPb(IBr), is being studied intensively because it limits the efficiency of wide band gap perovskite solar cells. It has been postulated that this phenomenon depends on the intrinsic ionic (in)homogeneity in samples already induced during film formation. A deeper understanding of the MAPb(IBr) formation processes and the influence of the halide ratio, solvents, and the perovskite precursor composition as well as the influence of processing parameters during deposition, e.
View Article and Find Full Text PDFWe report on digitally printed distributed feedback lasers on flexible polyethylene terephthalate substrates based on methylammonium lead iodide perovskite gain material. The perovskite lasers are printed with a digital drop-on-demand inkjet printer, providing full freedom in the shape and design of the gain layer. We show that adjusting the perovskite ink increases the potential processing window and decreases the surface roughness of the active layer to less than 7 nm, which is essential for low lasing thresholds.
View Article and Find Full Text PDF