The most common surgical procedure to manage the malunion of the bones is corrective osteotomy. The current gold standard for securing the bone segments after osteotomy is the use of titanium plates and allografts which have disadvantages such as possible allergic reaction, additional operations such as extraction of the graft from other sites and removal operation. The utilization of resorbable materials presents an opportunity to mitigate these drawbacks but has not yet been thoroughly researched in the literature.
View Article and Find Full Text PDFIn this study, electrospun scaffolds were fabricated using polycaprolactone (PCL) loaded with varying concentrations of β-carotene (1.2%, 2.4%, and 3.
View Article and Find Full Text PDFOnly a few mandibular bone finite element (FE) models have been validated in literature, making it difficult to assess the credibility of the models. In a comparative study between FE models and biomechanical experiments using a synthetic polyamide 12 (PA12) mandible model, we investigate how material properties and boundary conditions affect the FE model's accuracy using the design of experiments approach. Multiple FE parameters, such as contact definitions and the materials' elastic and plastic deformation characteristics, were systematically analyzed for an intact mandibular model and transferred to the fracture fixation model.
View Article and Find Full Text PDFBackground: To compare different methods of three-dimensional representations, namely 3D-Print, Virtual Reality (VR)-Glasses and 3D-Display regarding the understanding of the pathology, accuracy of details, quality of the anatomical representation and technical operability and assessment of possible change in treatment in different disciplines and levels of professional experience.
Methods: Interviews were conducted with twenty physicians from the disciplines of cardiology, oral and maxillofacial surgery, orthopedic surgery, and radiology between 2018 and 2020 at the University Hospital of Basel. They were all presented with three different three-dimensional clinical cases derived from CT data from their area of expertise, one case for each method.
Reconstruction of cranial defects is an arduous task for craniomaxillofacial surgeons. Additive manufacturing (AM) or three-dimensional (3D) printing of titanium patient-specific implants (PSIs) made its way into cranioplasty, improving the clinical outcomes in complex surgical procedures. There has been a significant interest within the medical community in redesigning implants based on natural analogies.
View Article and Find Full Text PDF